

environnement et stratégie

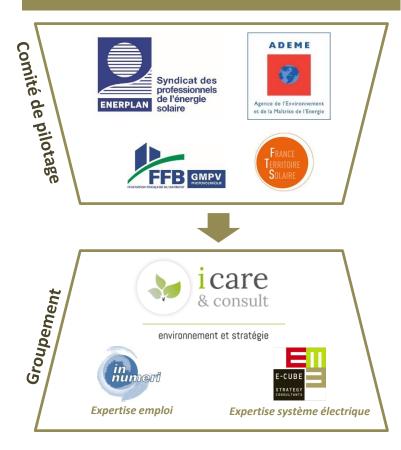
Etude de la compétitivité et des retombées socioéconomiques de la filière solaire française

Livrable final

Avril 2017

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

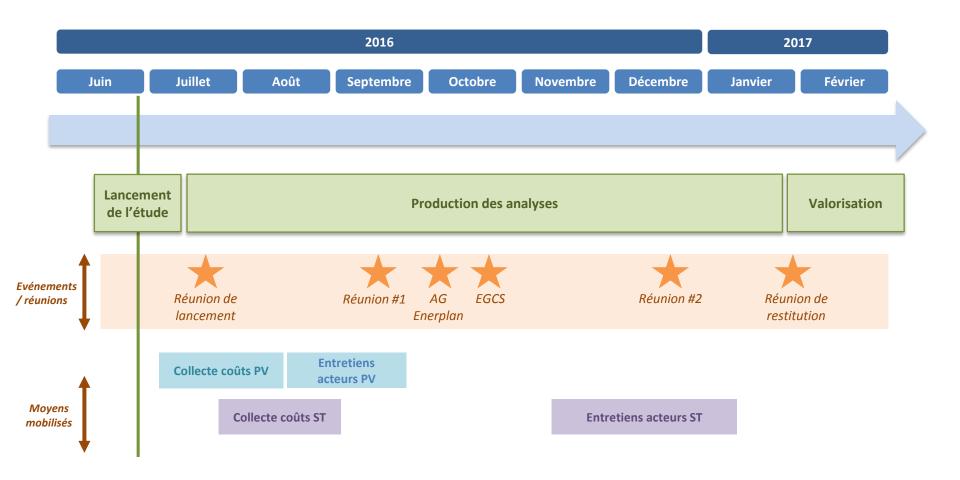


Objectifs et pilotage de l'étude

Objectifs

- Etudier les coûts et bénéfices actuels de la filière solaire française (2015) et réaliser une projection réalistes des retombées socio-économiques (emplois, émissions évitées, fiscalité) jusqu'à l'horizon retenu par la PPE (2023).
- Mettre en avant la compétitivité des solutions solaires, notamment dans un contexte de tarification plus forte du carbone émis, et analyser les modèles d'autoconsommation.

Pilotage



Vision globale de l'étude

Acronymes utilisés

• AO : Appels d'Offres

BEPOS: Bâtiment à Energie Positive

CAPEX: Capital Expenditure (ou coûts d'investissement)

• CCE: Contribution-Climat-Energie

• CCGT : Cycle Combiné Gaz

• **CEE**: Certificat d'Economie d'Energie

• **CFE**: Cotisation Foncière des Entreprises

CESI: Chauffe-Fau Solaire Individuel

CESC: Chauffe-Eau Solaire Collectif

• **CET**: Chauffe-Eau Thermodynamique

• CRE : Commission de Régulation de l'Energie

• CSPE : Contribution au Service Public de l'Electricité

• **CVAE** : Cotisation sur la Valeur Ajoutée des Entreprises

• ECS: Eau Chaude Sanitaire

• EMS: Energy Management System (système de gestion de l'énergie)

• **EP**: Energie Primaire

• EPCI : Etablissement Public de Coopération Intercommunal

• **ETP**: Equivalent-Temps-Plein

• GES: Gaz à Effet de Serre

HT: hors taxe (ie hors TVA ici)

• IAB: Intégré au Bâti

• IFER : Imposition Forfaitaire pour les Entreprises de Réseau

• IS: Impôt sur les sociétés

• ISB: Intégré Simplifié au Bâti

• **kWc**: kilowatt-crête

kt: kilo-tonne

• LCOE : Levelized Cost of Energy (ou coût complet actualisé de l'énergie)

• M€: Million d'euros

• MIP: Minimum Import Price

MWc : Mégawatt-crête

• MtCO2eq = Million de tonnes équivalent CO₂

NR : Non Renouvelable

NZEB: Near-Zero Energy Building

OPEX : Operational Expenditure (ou coûts d'exploitation)

• PPE : Programmation Pluriannuelle de l'Energie

PEBN: Performance Environnemental du Bâtiment Neuf

• PV : Photovoltaïque

RT : Réglementation Thermique

• SSC: Système Solaire Combiné

• **ST**: Solaire Thermique

• TA: Taux d'Autoconsommation

Tep: Tonne-Equivalent-Pétrole

• TRI : Taux de Rentabilité Interne

TURPE : Tarif d'Utilisation des Réseaux Publics d'Electricité

• TVA : Taxe sur la Valeur Ajoutée

• VAN : Valeur Actuelle Nette

Hypothèses d'ensemble et points de vigilance

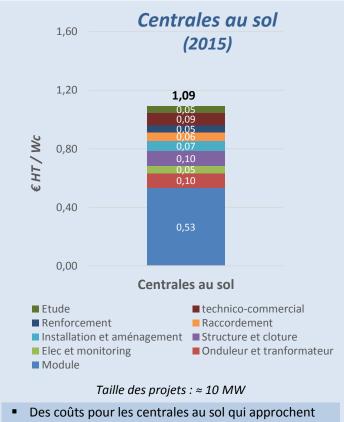
- Sauf mention contraire, l'ensemble des coûts de l'étude sont en € constant de 2016.
- Sauf mention contraire, l'ensemble des coûts sont donnés hors TVA.
- Les sources ou hypothèses utilisées pour les analyses sont :
 - o soit précisées directement dans les diapositives ;
 - soit précisées en annexe du présent document.
- Les coûts présentés dans le cadre de la présente étude (CAPEX, OPEX, LCOE) constituent des valeurs moyennes estimées sur la base d'éléments issus de la littérature, d'enquêtes, de témoignages d'acteurs et mis en cohérence à l'aide de modèles développés dans le cadre de précédentes études (ADEME BiPS PV de 2015 notamment). Ils doivent être pris comme des ordres de grandeur plus que comme des valeurs exactes.
- De manière générale, les résultats présentés dans le cadre de la présente étude restent fortement dépendants des hypothèses retenues pour les analyses et doivent donc être employés avec précaution.

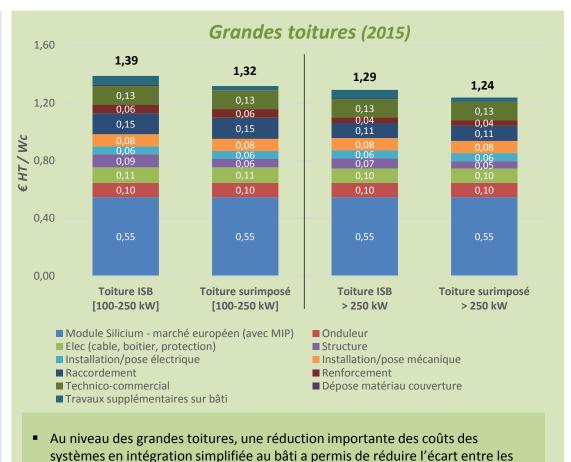
Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
 - Coûts
 - Compétitivité
 - Scénario de déploiement
 - Retombées à moyen terme
- Analyse de la filière solaire thermique française
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion



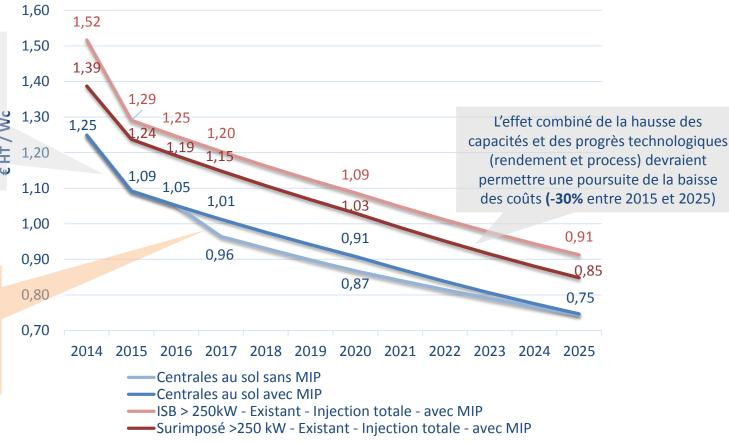

Grandes puissances

Petites/moyennes

Décomposition des CAPEX en 2015 Centrales au sol et grandes toitures

Des coûts pour les centrales au sol qui approchent 1€/Wc, avec des postes de coûts fortement optimisés dans un contexte de forte concurrence. Un module qui représente désormais près de 50% du coût total.

Nb: les postes considérés sont ceux de l'étude ADEME « Bilan, Perspective et Stratégie de la filière photovoltaïque française » de 2014. Le poste « renforcement » correspond aux coûts de renforcement du réseau nécessaire pour accueillir l'installation PV. Pour les installations >100kW, ce coût correspond aux quotes-parts définies dans les S3RENR (compris en 2015 entre 0€/Wc à 0,07€/Wc selon les régions) auxquelles s'ajoutent d'éventuels coûts supplémentaires de renforcement définis par Enedis via un devis ad-hoc.


coûts vis-à-vis des systèmes en surimposition (moins de 5% d'écart)

Grandes

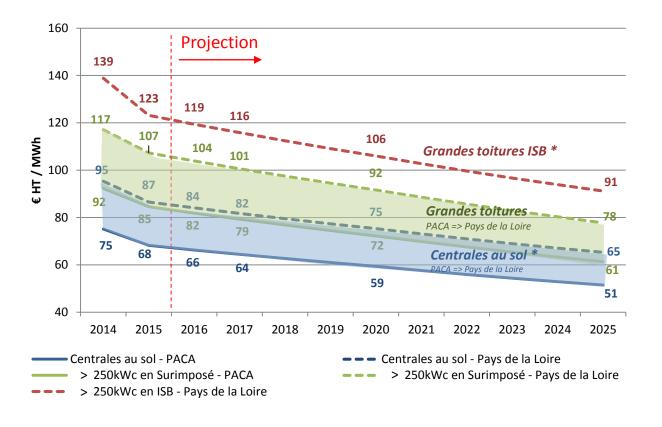
Evolution des CAPEX sur la période 2015-2025 Centrales au sol et grandes toitures

La baisse annoncée du prix des principaux composants a eu lieu, entraînant une baisse significative en 2015 (-13%)

Des évolutions sur le MIP pourraient permettre de baisser encore le coût (hypothèse de travail de 0,05 €/Wc)

- Méthodologie employée pour la baisse des coûts présentée en annexe.
- Hypothèse pour le MIP : écart de 0,05€/Wc sur le coût du module (basé sur la tendance 2015-2016 remontée des acteurs de la filière pour les coûts des modules avec/sans MIP).

MIP = Minimum Import Price (prix plancher en decà duquel les produits solaires chinois (modules et cellules) ne peuvent être vendus)



Grandes puissances

Petites/moyennes puissances

Evolution attendue des coûts de production Centrales au sol et grandes toitures

Une baisse constatée de **8-12**% en 2015 vs 2014

Encore environ **25% de baisse supplémentaire** du LCOE attendue entre 2015 et 2025

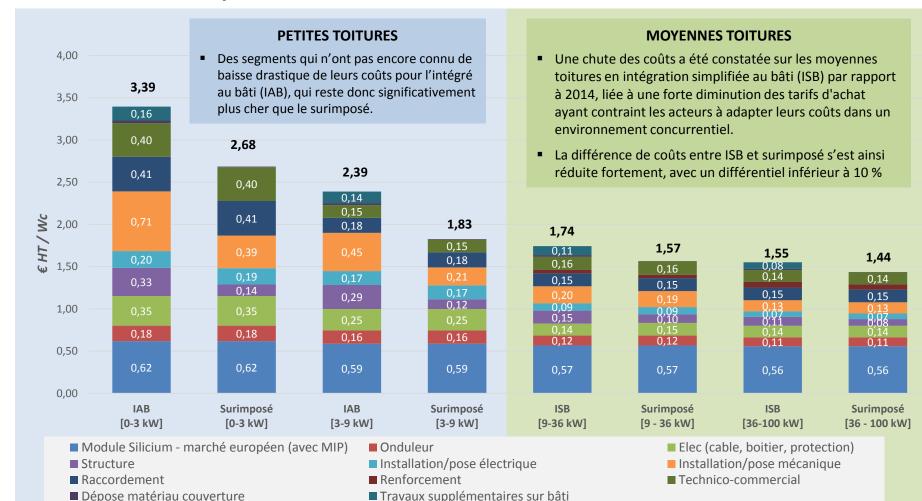
Des évolutions sur le MIP pourraient permettre de baisser le coût

Avec la baisse accélérée des CAPEX, la part des OPEX devient plus importante

- Le segment « centrales au sol » retenu ici correspond à des projets autour de 10MW
- ISB = Intégré Simplifié au Bâti

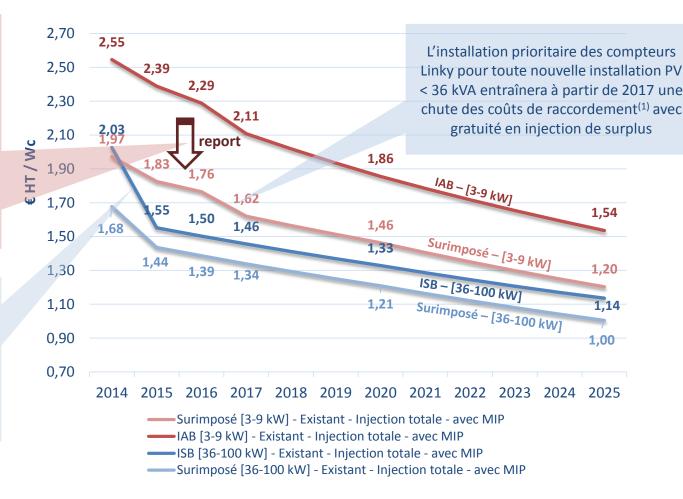
CAVEAT: Les LCOE sont construits sur la base d'un jeu important d'hypothèses, portant à la fois sur le productible, le taux d'actualisation et les coûts d'exploitation (OPEX). Des variations sur ces paramètres peuvent induire des changements conséquents sur les LCOE. Toute comparaison directe de ces LCOE avec d'autres grandeurs n'utilisant pas les mêmes hypothèses de calcul (par ex une comparaison avec les tarifs d'achat issus des appels d'offres CRE) est à proscrire.

Hypothèse de calcul pour le LCOE : durée de vie de 25 ans, taux d'actualisation de 3,03 % pour les centrales au sol et de 3,42 % pour les grandes toitures, ratio de performance de 0,8. OPEX correspondant à 3% des CAPEX en moyenne sur la période 2016-2025 (mais baisse plus faible des OPEX par rapport aux CAPEX). Le MIP (Minimum Import Price) est appliqué. Les sources et hypothèses complémentaires sont précisées en annexe.



Décomposition des CAPEX en 2015 Petites et moyennes toitures

Petites/moyennes puissances

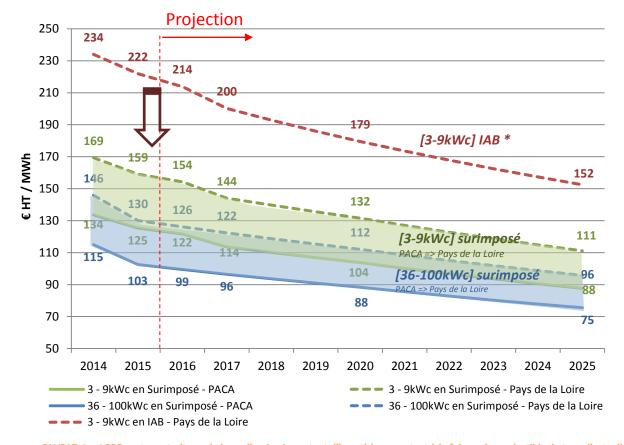

Nb : les catégories considérées sont celles de l'étude ADEME « Bilan, Perspective et Stratégie de la filière photovoltaïque française » de 2014.
Pour les puissances comprises entre 9 et 100kW, non soumis au S3RENR, des coûts de renforcement des réseaux BT et HTA (définis via devis ad-hoc et grille Enedis) sont pris en compte. Les puissances <9kW ne demandent en règle pas de renforcement.

Petites/moyennes puissances

Evolution des CAPEX sur la période 2015-2025 Petites et moyennes toitures

La forte augmentation du tarif d'achat pour le surimposé toiture (qui passe du tarif T5 de base à un tarif dédié), prévue pour 2017, devrait entraîner un report de l'IAB/ISB vers le surimposé, amenant une baisse immédiate de 25% du CAPEX des petites toitures (3-9 kW)

Les CAPEX des moyennes toitures (36-100kW) ont fortement baissé entre 2014 et 2015 sous l'effet de la forte contraction des prix d'installation et de structure


(1) Hypothèses prises pour la baisse des coûts de raccordement : division par des deux des coûts de raccordement pour les installations < 36 kVA en injection dû à la mutualiser du compteur pour le soutirage et l'injection (compteur Linky) ; et suppression des coûts de raccordement pour les installations en autoconsommation [Source : Enerplan, Enedis]

13

Grandes puissances

Petites/moyennes puissances

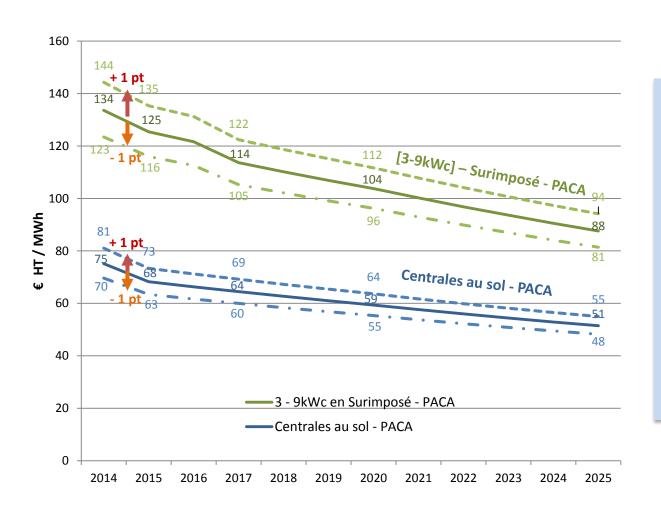
Evolution attendue des coûts de production Petites et moyennes toitures

- Le passage de l'intégré bâti au surimposé à partir de 2017 (avec le nouvel arrêté tarifaire) pourrait permettre d'abaisser le coût de production PV de 25-30%. L'intégré au bâti se positionnera préférentiellement sur le neuf.
- Par ailleurs, une baisse très importante (-25 à -30% environ) de 2015 à 2025 attendue du LCOE résidentiel liée à plusieurs effets :
 - Baisse du coût des composants
 - Effet volume et professionnalisation filière

IAB = Intégré au Bâti

CAVEAT: Les LCOE sont construits sur la base d'un jeu important d'hypothèses, portant à la fois sur le productible, le taux d'actualisation et les OPEX. Des variations sur ces paramètres peuvent induire des changements conséquents sur les LCOE. Toute comparaison directe de ces LCOE avec d'autres grandeurs n'utilisant pas les mêmes hypothèses de calcul (par ex une comparaison avec les tarifs d'achat) est à proscrire.

Note: Hypothèse de calcul pour le LCOE: durée de vie de 25 ans, taux d'actualisation fixe de 3,90% pour les petites toitures et de 3,42% pour les moyennes toitures, ratio de performance de 0,75 en IAB/ISB et de 0,8 en surimposé, coûts d'exploitation (OPEX) correspondant à 2,5% - 3% des coûts d'investissement (CAPEX) en moyenne sur la période 2016-2025.



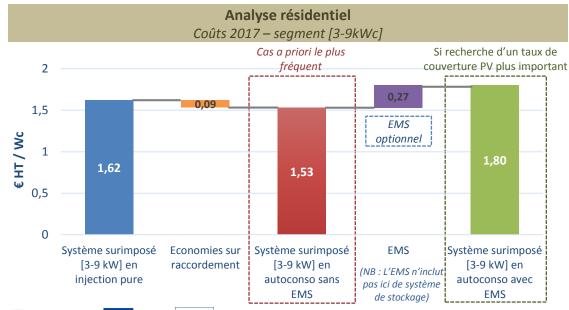
Sensibilité du LCOE au Taux d'Actualisation

Petites/moyennes puissances

L'augmentation ou la baisse du taux d'actualisation de **1 point de** % entraîne une variation du LCOE (respectivement à la hausse ou à la baisse) **de 7-8** % **environ.**

La conjoncture actuelle (période 2015-2017), avec des taux d'emprunt très bas, permet d'abaisser significativement le prix des projets PV [plus proche de la fourchette basse présentée]

Hypothèses retenues: variation de +1 et -1 point de % autour du taux d'actualisation de référence retenu dans l'étude (3,0% pour les centrales au sol et 3,9% pour les petites toitures)


Quid des CAPEX PV en autoconsommation ?

Postes de coûts réduits

■ A l'investissement, pour les puissances < 36 kVA, l'installation d'un système PV en autoconsommation (partielle ou totale) induit des économies par le biais de la réduction, voire de la suppression, des coûts de raccordement (mutualisation du compteur Linky pour la production et la consommation).

Postes de coût supplémentaire

- L'installation d'un système photovoltaïque en autoconsommation peut dans certains cas induire des coûts supplémentaires en cas d'ajout d'un EMS (Energy Management System) qui permet de maximiser le taux d'autoconsommation via une meilleure optimisation et adéquation entre consommation et production.
- Le passage en autoconsommation totale nécessite dans la majorité des cas : soit d'ajouter un système de stockage (par batterie généralement), soit de sous-dimensionner le système PV installé, ce qui conduit dans les deux cas à un renchérissement du coût de l'installation.

Analyse tertiaire Coûts 2017 – segment [36-100kWc]

Pour les installations >36 kVA, l'installation des compteurs Linky n'est pas encore prioritaire et la distinction entre injection du surplus et injection totale n'est pas encore présente dans les barèmes de facturation d'Enedis. Toutefois, le modèle d'autoconsommation avec injection du surplus doit permettre la réalisation d'économie sur le poste de raccordement via les économies sur le compteur.

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
 - Coûts
 - Compétitivité
 - Scénario de déploiement
 - Retombées à moyen terme
- Analyse de la filière solaire thermique française
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

Quelle compétitivité pour le photovoltaïque et le modèle d'autoconsommation ?

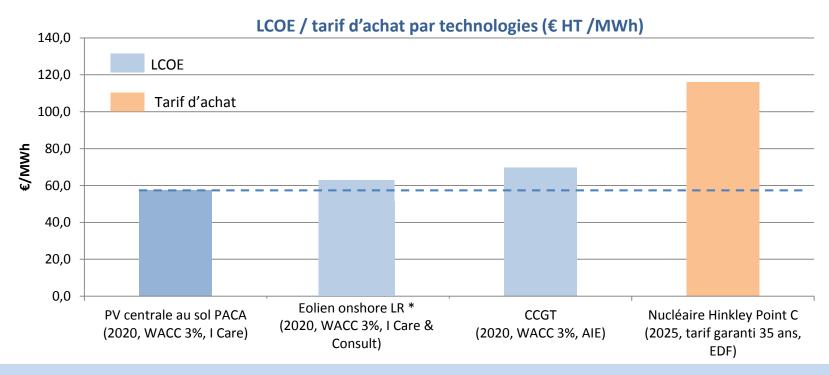
Compétitivité de l'énergie photovoltaïque sur le réseau

- Comment le photovoltaïque se positionne-t-il en termes de coûts vis-àvis des autres nouveaux moyens de production d'électricité?
- A quelle échéance le photovoltaïque pourra-t-il être compétitif, sans soutien, sur le marché de l'électricité ?
 - C'est-à-dire quand le LCOE du PV sera inférieur au prix moyen du marché de l'électricité

Energie PV

Compétitivité du photovoltaïque en autoconsommation

- A quelle échéance le modèle d'autoconsommation partielle ou totale pourra devenir pertinent d'un point de vue économique pour le producteur autoconsommateur?
 - Quelles différences, d'un segment de puissance à un autre, en termes de compétitivité ?
 - Dans quelle mesure les résultats de compétitivité sont sensibles aux taux d'autoconsommation retenus?


Autoconso

A horizon 2020, un solaire PV compétitif par rapport aux autres nouveaux moyens de production d'électricité

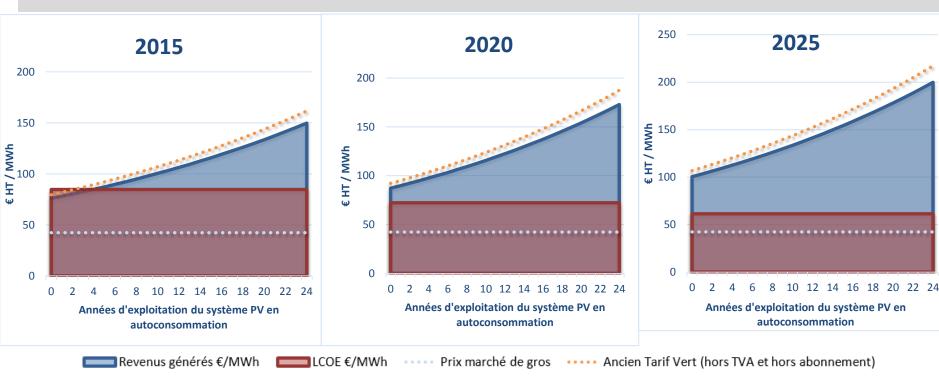
Dans la partie Sud de la France, la technologie photovoltaïque peut d'ores-et-déjà être considérée comme compétitive vis-à-vis des autres nouveaux moyens de production d'électricité.

Toutefois, la comparaison des technologies sur la base du simple LCOE est **limitée** car elle ne prend pas en compte **l'utilité du kWh produit** (sa flexibilité, sa capacité à couvrir les pointes de consommation, sa capacité à participer aux services systèmes, son caractère renouvelable et/ou décarbonné, etc.).

Source: AIE, EDF, analyse I Care & Consult et E-Cube

LR = Languedoc Roussillon

CCGT = Cycle combiné gaz (combined cycle gas turbine)

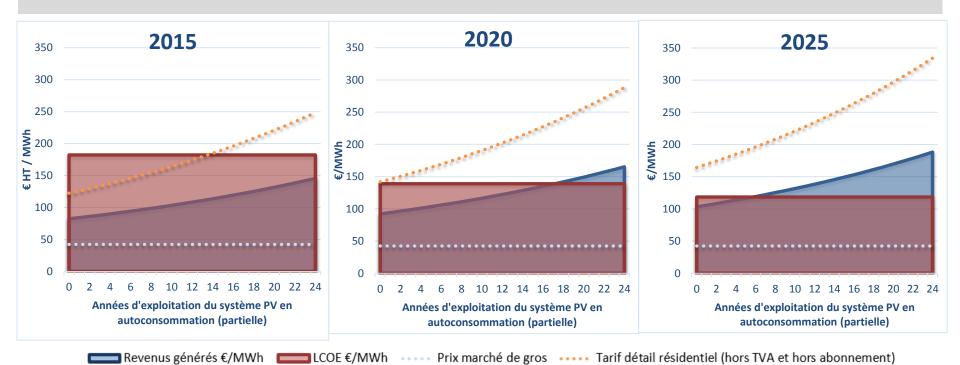


L'autoconsommation pour les grandes toitures, grâce à un taux d'autoconsommation potentiellement élevé, est d'ores-et-déjà rentable dans le Sud de la France.

Analyse de la compétitivité de l'autoconsommation partielle pour les très grandes toitures [>250kW]

Région PACA - Taux d'autoconsommation de 90% - surimposé - sans soutien – hors TVA

Hypothèses: hausse de 3%/an du prix de détail (ex tarif réglementé vert), pas de hausse du prix de gros de l'électricité, analyse I Care & Consult Dans le grand tertiaire ou l'industriel (grandes toitures), la possibilité d'atteindre un fort taux d'autoconsommation (≈ 90%) combinée avec un coût à la production d'ores-et-déjà assez faible, permet au modèle d'être **rentable sans soutien dès 2015 dans le Sud de la France**.



Le modèle d'affaire de l'autoconsommation partielle dans le résidentiel est compétitif à horizon 2025 et nécessite un soutien avant

Analyse de la compétitivité de l'autoconsommation pour les petites toitures [0-3kW] en résidentiel Région PACA - Taux d'autoconsommation de 50% - surimposé - sans soutien – hors TVA

Hypothèses: hausse de 3%/an du prix de détail (tarif réglementé bleu), pas de hausse du prix de gros de l'électricité, analyse I Care & Consult

En 2025, les économies générées en autoconsommation et sans soutien par un système [0-3kW] dépasseront les coûts de production en moyenne sur les 25 ans d'exploitation du système

Un modèle d'autoconsommation dont la rentabilité dépend fortement du segment de puissance considéré

Illustration sur PACA

Analyse de la **rentabilité des projets** (sans soutien) en autoconsommation <u>dans le Sud (</u>au sens de la VAN>0) et du **taux de rentabilité interne** des projets (pour une durée de vie de 25 ans) - *hypothèses de référence*

La rentabilité sans soutien s'imposera très vite dans le Sud (PACA) pour les grands bâtiments tertiaires (type centre commercial par exemple), avec de très bons temps de retour dès 2020. Les plus petites installations trouveraient une rentabilité sans soutien plus tardivement (à horizon 2025), en raison notamment de leur coût à l'investissement élevé et de taux d'autoconsommation relativement faibles.

Hypothèses: Hausse des prix réglementés d'électricité de 3%/an pour le prix de détail (tarif bleu pour les segments [0-3kWc] et [3-9 kWc], ex tarif jaune pour le segment [36-100 kWc] et ex tarif vert pour le segment [>250 kWc]. Pas de hausse du prix de l'électricité de gros, Analyse I Care & Consult.

VAN = Valeur Actuelle Nette
TA = Taux d'autoconsommation

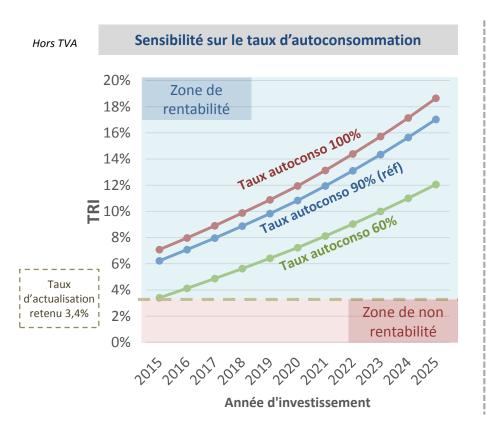
TRI = Taux de Rentabilité Interne

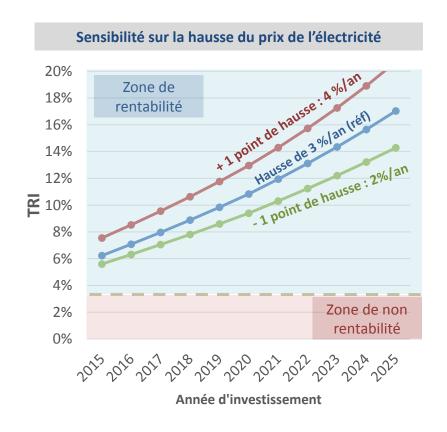
Un modèle d'autoconsommation dont la rentabilité dépend fortement de la région considérée

Rentabilité en Pays de la Loire

Analyse de la **rentabilité des projets** (sans soutien) en autoconsommation <u>en Pays de La Loire</u> (au sens de la VAN>0) et du **taux de rentabilité interne** des projets (pour une durée de vie de 25 ans) - *hypothèses de référence*

Dans les zones climatiques intermédiaires (type Pays de la Loire), le modèle d'autoconsommation trouvera également une **rentabilité à court terme pour les très grands bâtiments tertiaires**. En revanche, le résidentiel et le petit/moyen tertiaire auront toujours besoin de soutien à moyen terme pour que le modèle d'autoconsommation émerge.

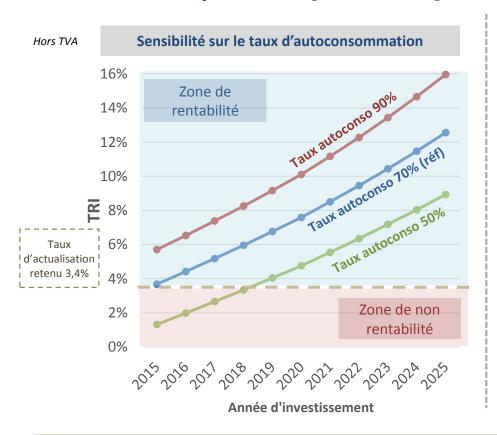



Hypothèses: Hausse des prix réglementés d'électricité de 3%/an pour le prix de détail (tarif bleu pour les segments [0-3kWc] et [3-9 kWc], ex tarif jaune pour le segment [36-100 kWc] et ex tarif vert pour le segment [>250 kWc]. Pas de hausse du prix de l'électricité de gros, Analyse I Care & Consult.

VAN = Valeur Actuelle Nette **TA** = Taux d'autoconsommation

TRI = Taux de Rentabilité Interne

Illustration sur système PV toiture [>250 kWc] - PACA


Les systèmes PV en grande toiture (>250kW) pouvant être adossés à des niveaux élevés de consommation (process industriel, zones commerciales, etc.), les taux d'autoconsommation restent généralement élevés et permettent aux systèmes d'être rentables, même avec un taux de 60% ou une hausse moins forte des prix d'électricité.

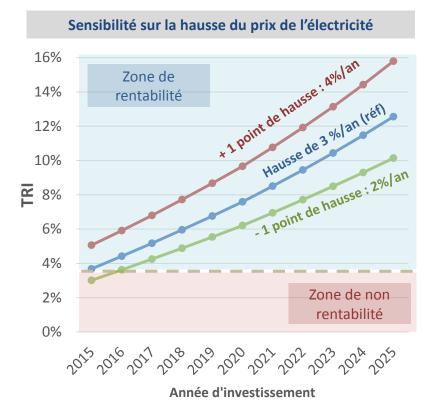
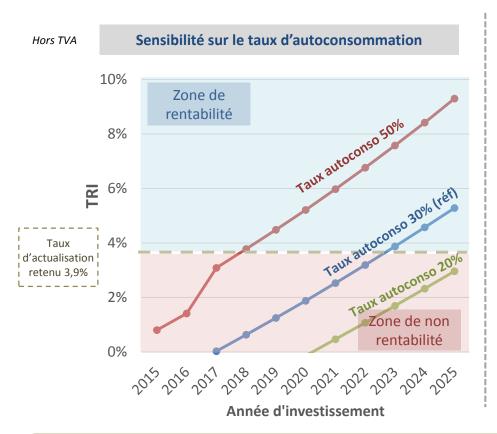


Illustration sur système PV [36-100 kWc] – tertiaire - PACA


Pour des moyennes toitures dans le secteur tertiaire, la rentabilité des projets en autoconsommation reste **fortement dépendante du mode de consommation du bâtiment** considéré (et donc de son taux d'autoconsommation), avec un début de rentabilité s'échelonnant de 2015 à 2019 selon si l'autoconsommation se réalise à 90% ou à 50%. De même, l'année de rentabilité et le TRI restent fortement contraints par **l'évolution à venir du prix de l'électricité** (qui déterminent les économies générées).

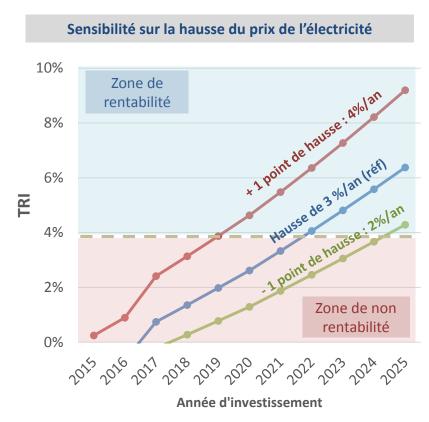
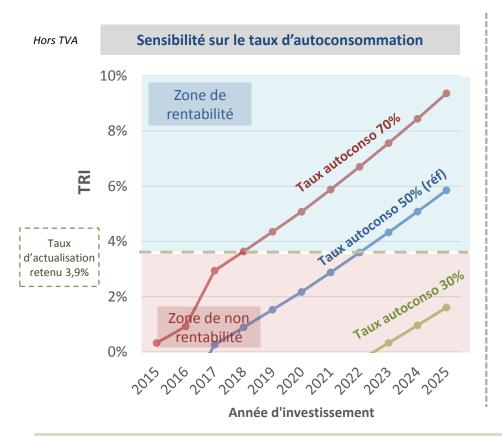


Illustration sur système PV [3-9 kWc] – résidentiel - PACA


Pour des petites toitures dans le secteur résidentielle, la rentabilité des projets en autoconsommation reste **fortement dépendante du mode de consommation de l'occupant** (et donc de son taux d'autoconsommation), avec un début de rentabilité pouvant être atteint dès 2018 avec un bon taux d'autoconsommation (50%) mais au-delà de 2025 avec des taux bas (20%). De même, l'année de rentabilité et le TRI restent fortement contraints par **l'évolution à venir du prix de l'électricité** (qui déterminent les économies générées).

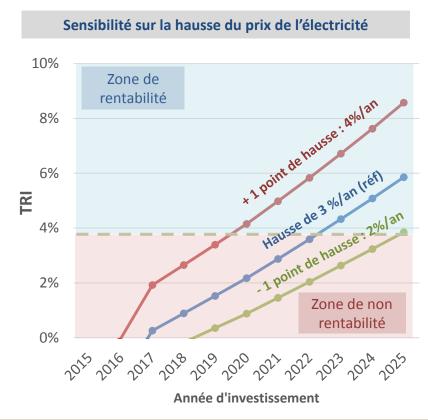
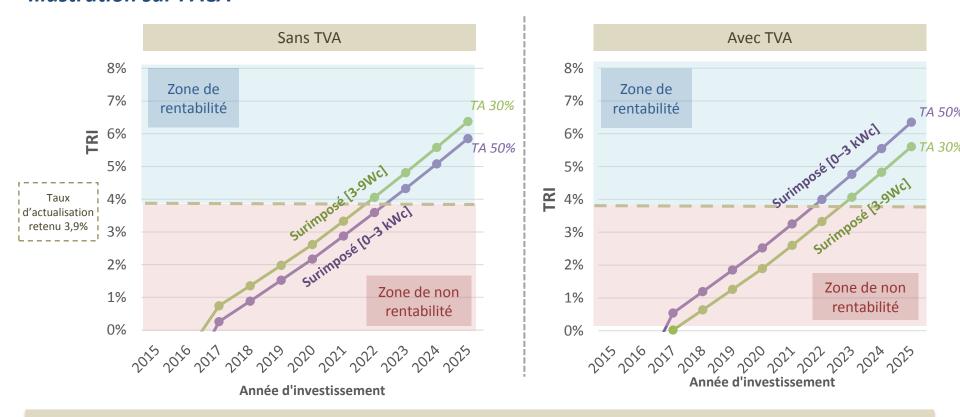


Illustration sur système PV [0-3 kWc] – résidentiel - PACA


Pour le petit résidentiel [0-3 kWc], la **recherche d'un taux d'autoconsommation élevé**, en cherchant par exemple à décaler sa consommation au moment où le système PV produit, est primordial pour que le modèle d'autoconsommation soit rentable sans soutien pour le particulier (compétitif dès 2018 avec un taux de 70%, contre 2022 avec un taux de 50% et au-delà de 2025 pour des taux inférieurs). Un **signal-prix élevé de l'électricité** permettrait d'améliorer la compétitivité du modèle.

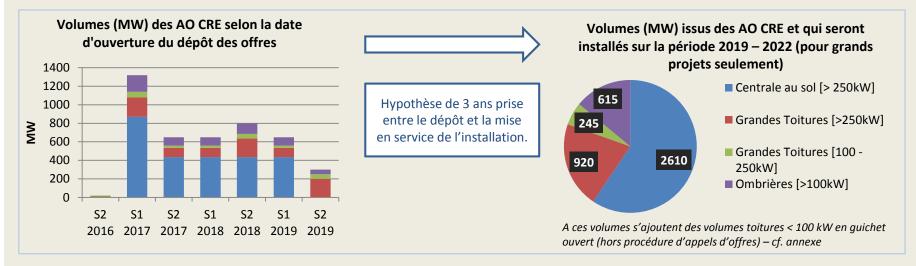
Un passage HT -> TTC qui ne modifie que marginalement la rentabilité du modèle d'autoconsommation, même pour le [0-3kWc] qui bénéficie d'un taux de TVA réduit Illustration sur PACA

La prise en compte de la TVA dans les calculs de rentabilité, plus représentative de la réalité d'un autoconsommateur résidentiel, ne modifie qu'à la marge la rentabilité du système PV en avançant d'un an environ la rentabilité des systèmes.

NB: En pratique, l'installation d'un système PV, tout comme la maintenance, est soumise à une TVA de 20%, sauf pour le segment [0-3kWc] qui bénéficie d'un taux réduit de 10% à l'installation. La part variable de l'électricité consommée est soumise à un taux de TVA de 20%. L'autoconsommation permet donc de réaliser des économies de TVA au prorata de la part d'électricité autoconsommée. En revanche, la part de l'électricité qui n'est pas autoconsommée (surplus) et qui est injectée sur le réseau au prix du marché de gros est vendue HT (non prise en compte de la TVA).

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
 - Coûts
 - Compétitivité
 - Scénario de déploiement
 - Retombées à moyen terme
- Analyse de la filière solaire thermique française
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion



Analyse du contexte et hypothèses prises pour la définition des scénarios

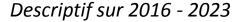
- Un objectif PPE atteignable en 2023 (19,2 GW en médian) mais avec un point de passage en 2018 plus complexe du fait du temps de développement des projets
- Des AO CRE lancés avec un planning de déploiement sur plusieurs années permettant d'apporter de la visibilité à la filière

- Des **orientations actuelles en matière de bâtiments neufs qui n'encourage pas le recours à la production photovoltaïque** pour le bâti (orientations actuelles du référentiel PEBN et éloignement du « BEPOS »)*
- Des outils réglementaires pour l'autoconsommation en cours d'élaboration (loi du 24 février 2017 ratifiant l'ordonnance autoconsommation, appels d'offres expérimentaux, micro –TURPE, suppression frais de raccordement pour les petites puissances en autoconsommation, ...) et à faire évoluer (autoconsommation collective au-delà de 100kW, ouverture au HTA)
- Un Minimum Import Price en discussion au niveau européen (renchérissement du coût des projets versus protection d'une part de la filière industrielle au détriment d'une autre part) décision à venir sur l'abandon du MIP ou son prolongement pour 2 ans

PPE = Programmation Pluriannuelle de l'Energie

AO CRE = Appels d'Offres portés par la Commission de Régulation de l'Energie (CRE)

PEBN = Performance Environnementale des Bâtiments Neufs (référentiel)



^{*} Les hypothèses d'installation de PV via le BEPOS différent en cela des hypothèses prises dans l'étude ADEME BiPS PV de 2014

Différents scénarios de déploiement PV possibles pour

l'atteinte des objectifs PPE

Centrales au sol vs. toiture

■ Centrales au sol

■ Toitures

Autoconsommation vs.

■ Autoconsommation

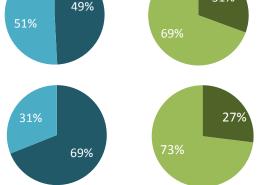
31%

« Référence »

avec 2 variantes:

- 1 avec MIP
- 1 sans MIP

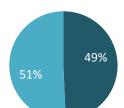
Volumes


injection totale pour les toitures

Injection

« Centrales au sol »

- Volume PPE médian
- Mix centrales au sol / toitures basé sur visibilité AO CRF
- Autoconsommation movenne (≈ 30 % des MWc installés) pour PV Bâtiment
- Forte augmentation de la part de centrales au sol (50% → 70% des MW installés)
- Autoconsommation movenne (≈ 30 % des MWc installés)
- + 13 000 MWc. entre 2016 et 2023



37%

« Toiture et forte autoconsommation »

- Forte augmentation de la part de toitures (50% → 70% des MWc installés)
- Fort développement de l'autoconsommation (31% \rightarrow 63%)

16 000 MWc entre 2016 et 2023

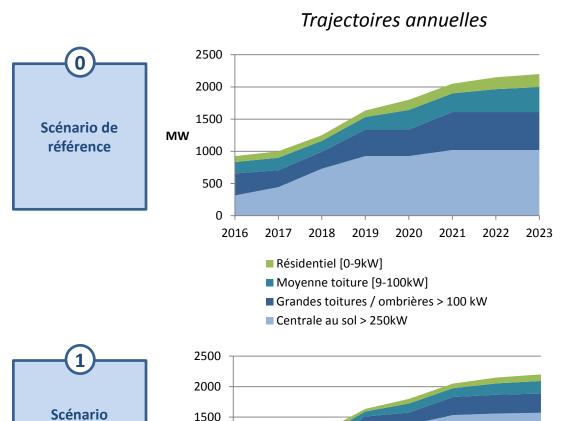
31%

62%

63%

«Trajectoire ambitieuse »

- Volume de puissance (22GWc) dépassant le scénario PPE haut
- Mix centrales au sol toitures basé sur visibilité AO CRE
- Fort développement de l'autoconsommation (31% \rightarrow 62%)



PPE = Programmation Pluriannuelle de l'Energie

AO CRE = Appels d'Offres portés par la Commission de Régulation de l'Energie (CRE)

Des trajectoires dépendantes des orientations stratégiques retenues

Leviers principaux

Hypothèses structurantes – Sc. de réf

- AO CRE adaptés pour permettre un équilibre centrales au sol / toitures
- Visibilité sur les AO CRE

Hypothèses structurantes – Sc. Centrales

- AO CRE
- Volonté de produire de l'énergie à bas coût et d'abaisser le niveau de soutien requis
- Continuité dans la baisse des tarifs d'achat ne permettant pas une relance des segments toiture

« Centrales

au sol »

MW

1000

500

0

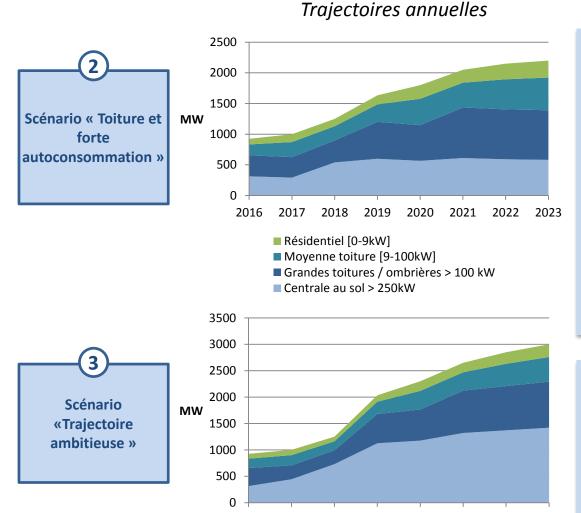
2016

2017

2018

2019

2020


2021

32

2022

2023

Des trajectoires dépendant de drivers stratégiques

2018

Leviers principaux

Hypothèses structurantes « toitures » :

- Passage au surimposé (CAPEX moins élevé et instauration d'un nouveau tarif d'achat)
- Réglementation (BEPOS, RT2020)
- Forte contrainte sur l'occupation des sols

Hypothèses structurantes « autoconso »

- Baisse du coût de raccordement
- Baisse des tarifs d'achat en injection totale
- AO autoconsommation.
- Définition d'un cadre législatif simplifié et d'un dispositif de soutien dédié (prime à l'investissement notamment).

Hypothèses structurantes « trajectoire ambitieuse »

- AO CRE pour des grandes puissances
- Baisse des tarif d'achat coordonné avec une valorisation attractive du surplus de l'autoconsommation
- Hausse accélérée du prix de l'électricité

2016

2017

2022

2023

2021

2020

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
 - Coûts
 - Compétitivité
 - Scénario de déploiement
 - Retombées à moyen terme
- Analyse de la filière solaire thermique française
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

Quelles sont les retombées socio-économiques et environnementales liées au PV dans le scénario PPE (réf) ?

1

Retombées emplois

Plus de 21 000 emplois directs et indirects (en brut) à horizon 2023

+ 10 000 ETP / 2016

2

Retombées pour les collectivités

Près de **180 M€/an versées aux collectivités locales** à horizon 2023 via la fiscalité

(dont ≈ 130 M€/an grâce aux projets installés sur 2016-2023)

3

Coût du soutien porté par le consommateur

Des nouvelles installations (13 GWc) qui demandent un **niveau de soutien beaucoup plus faible** qu'auparavant (0,84 Md€ supplémentaire en cumulé à horizon 2023 vs 2,47 Md€ pour les 7 GWc historiques)

Bénéfices environnementaux

(GES, polluants, énergie non renouvelable)

Le scénario PPE sur 2016-2023 permettrait d'économiser en 2023 :

- 5,2 MtCO_{2ég} / an
- 12,5 kt NOx/an; 6,7 kt SO₂/an
- 30 TWh d'énergie primaire NR / an

5

Occupation des sols

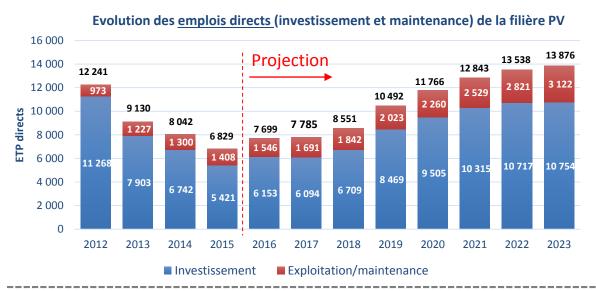
1 600 ha/an soit 12 800 hectares d'ici 2023

soit ≈ 0,05 % des 4 régions méridionales métropolitaines, ou encore 0,25 % de la surface artificialisée en Métropole

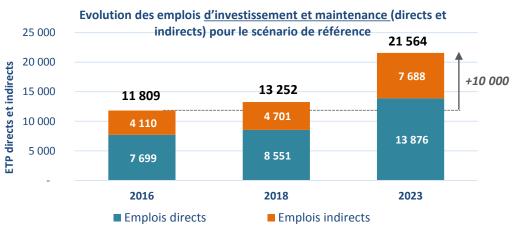
6

Revalorisation patrimoniale

Revalorisation du **patrimoine terrien** (revalorisation de sols usagés, à faible valeur agronomiques et/ou sous utilisés) et du **patrimoine immobilier** (améliorations du bâti, remise aux normes, « valeur verte »)


Sensibilisation des populations aux enjeux énergie-climat

Le photovoltaïque comme vecteur de sensibilisation, via la mise en place de parcours pédagogiques, de visites de sites, de projets participatifs et citoyens, etc.



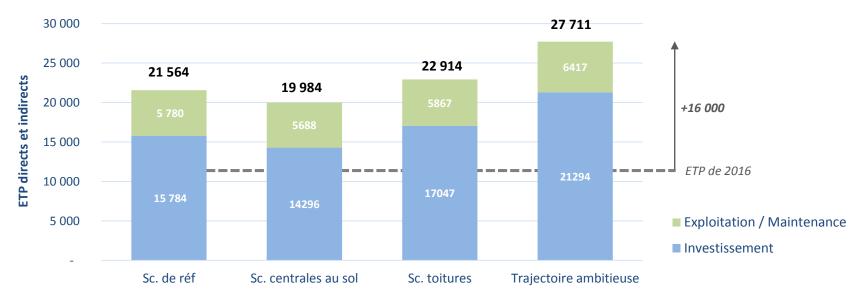
- Grâce à la PPE, fin de la destruction d'emplois directs dans la filière et retour en 2020 au niveau de 2012
- Une part de plus en plus importante des emplois liés à l'exploitation et la maintenance (emplois pérennes et non délocalisables) due à la croissance continue du parc PV

Un **quasi doublement** des emplois directs et indirects entre 2016 et 2023

√ + 10 000 emplois

Emplois directs: Emplois dans l'un des éléments de la chaîne de valeur de la filière photovoltaïque (fabrication, installation, maintenance, ...)

Emplois indirects: Emplois dans les activités de production de services ou produits nécessaires à la fabrication des produits directs. Ces activités de production ne sont pas spécifiques à la filière photovoltaïque.



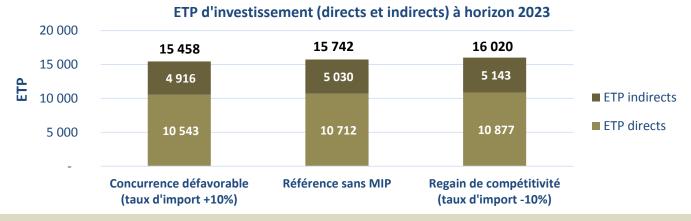
Sources : ADEME « marchés et emplois liés à l'efficacité énergétique et aux EnR », avril 2016 (pour emplois 2012-2013), ADEME « Bilan, Perspective et Stratégie de la filière PV » - 2015 (pour emplois 2014), modèle In Numeri basé sur les coûts I Care & Consult (pour emplois 2016-2023)

Un nombre d'emplois qui peut être maximisé sous certaines conditions

ETP <u>directs et indirects</u> par scénario (investissement et maintenance) à horizon 2023

- Un nombre d'emplois en 2023 dépendant du scénario retenu.
- 30% d'emplois supplémentaires (environ 6 150 emplois directs et indirects) dans le scénario Trajectoire Ambitieuse par rapport au Scénario de référence, grâce à l'effet volume et un effet mix produit (part « toiture » plus importante).
 - ✓ 16 000 emplois de plus qu'en 2016

Sources : modèle In Numeri basé sur les coûts I Care & Consult



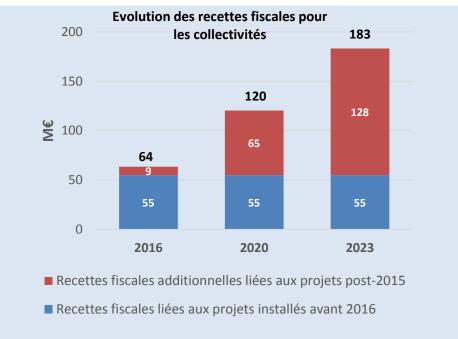
Le retrait du MIP : un impact globalement limité sur les emplois

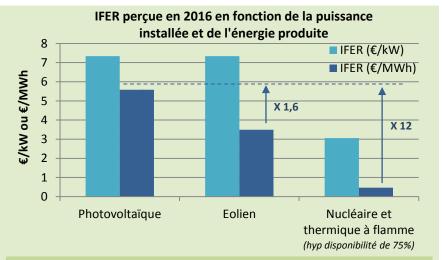
Impact potentiel associé au retrait du MIP

- Impact sur le coût des modules
 - Le retrait du MIP entraînerait un **abaissement du coût des modules** (≈ 5 c€/Wc)
- Impact sur les importations, le retrait du MIP pourrait entraîner :
 - une **concurrence extérieure accrue**, réduisant la part de modules français dans les systèmes installés. Hypothèse testée : + 10 % d'import
 - un regain de compétitivité pour les fabricants de modules (non intégrés) qui peuvent ainsi s'approvisionner en cellules PV à bas coût → augmentation de la part de module français (effet antagoniste). Hypothèse testée : -10% d'import
- Impact sur la qualité environnementale des modules
 - En fonction de l'impact sur les importations et de la provenance de ces importations

Un **impact sur l'emploi finalement très limité** en France où les capacités de production et les emplois associés restent limités : variation < 2%

De plus, cette analyse ne prend pas en compte **l'effet d'amélioration du LCOE PV** (≈ -3% en 2017) qui permettrait, à investissement constant, de **développer plus de projets** (donc plus d'emplois).





Le photovoltaïque à la base d'importantes retombées fiscales pour les collectivités locales

Les retombées fiscales (hors IS) pour les collectivités (communes, EPCI, Département, Région) sont estimées en moyenne à 13 000 €/MWc dont 7 340 €/MWc d'IFER (Imposition forfaitaire pour les entreprises de réseau) réparti 50%/50% entre les EPCI et le département. Les autres taxes prises en compte sont la CVAE (Cotisation sur la Valeur Ajoutée des Entreprises), la CFE (Cotisation Foncière des Entreprises) et les taxes foncières.

Rapporté au kW, les EnR (PV et éolien) génèrent 2 à 3 fois plus d'IFER pour les collectivités que le nucléaire ou le fossile.

Rapporté à l'énergie produite, le PV génère près de 1,6 fois plus d'IFER que l'éolien et près de 12 fois plus que le nucléaire ou le fossile.

A fiscalité constante et dans le cadre des objectifs PPE, la filière photovoltaïque pourrait générer près de **180 M€ / an de recettes fiscales** pour les collectivités locales à horizon 2023 (dont près de 130 M€ / an de recettes additionnelles apportés par les projets installés sur 2016-2023 selon la trajectoire PPE définie).

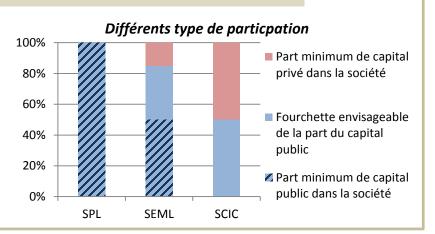
Sur l'ensemble de la période 2016-2023, ce serait près de **900 M€ distribués** aux territoires via la fiscalité (dont 490 M€ issus des systèmes PV installés sur la période 2016-2023). Cette valeur n'intègre pas les éventuelles retombées locatives, si la collectivité est le bailleur.

Le photovoltaïque à la base d'importantes retombées pour les territoires, d'abord économiques... A travers les loyers et prises de participation dans les projets

Revenus fonciers

L'installation de projets photovoltaïques entraîne le **versement de loyers** aux propriétaires du bâti ou des terrains (collectivités locales ou acteurs privés). Ce loyer peut être **très variable** selon la nature du projet (en toiture ou au sol) et sa localisation (valeur initiale du foncier ou du patrimoine).

Fourchette moyenne du loyer annuel : 3 500 – 25 000 €/MWc.an


(pour des projets de centrales au sol ou grandes toitures)

Source: CRE

Revenus liés aux participations des collectivités dans les projets

Pleinement ou partiellement **propriétaire et gestionnaire des installations**, la collectivité perçoit des revenus générés par la vente d'électricité.

Ces **revenus** sont proportionnels au capital public investi dans la société juridique.

Source: Guide sur les montages juridiques (AMORCE).

Sources: CRE, Etudes de cas de projets photovoltaïques (Enerplan), Analyse I Care & Consult

... mais aussi des retombées en emplois locaux et plus globalement une redynamisation du territoire

Un développement de l'emploi local dans des activités pérennes.

Des emplois locaux sont créés pour la maintenance et la gestion des installations. Des mesures et des projets apparaissent pour favoriser le tissu économique local.

Exemple

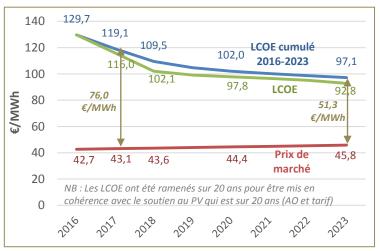
- Mobilisation de 22 entreprises locales pour le chantier de 10 mois du projet agri-solaire d'Ortaffa, et 4 emplois durables créés/conservés sur le site (apiculteur, opérateur de maintenance, agent d'entretien, éleveur de brebis conservé).
- Création de chartes viticole, apicole et ovine qui pérennisent ainsi des exploitations et des emplois (Commune d'Ortaffa).
- Création d'emplois en éco-tonte de moutons et prestation d'une entreprise locale de télésurveillance pour le site (Commune de Pujaut dans le Gard).
- Dépollution d'une toiture d'entreprise et remise aux normes permettant ainsi l'amélioration des conditions de travail et la pérennisation de l'entreprise (Commune de Saint Gilles dans le Gard).

Un usage de la fiscalité qui contribue à la redynamisation des territoires ruraux

Les retombées fiscales permettent d'entreprendre des projets qui seront décisifs pour redévelopper l'attractivité d'un territoire rural.

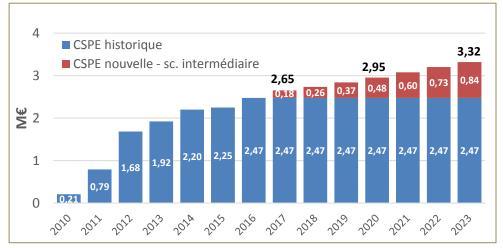
- Construction d'infrastructure de sport et de loisir pour enfants (Commune d'Ortaffa)
- Construction d'un café-restaurant multiservices (Commune de Chalmoux)
- Rachat et réaménagement d'un bâtiment en salle polyvalente, modernisation des logements du village (Commune d'Ortaffa)
- Réfection d'une ancienne salle paroissiale, sécurisation de voiries, mise en accessibilité de La Poste pour les personnes en situation d'handicap (Commune de Chalmoux)

Sources: Etudes de cas Enerplan, I Care & Consult



41

Le niveau de soutien qui sera apporté aux nouvelles installations PV sur la période 2016-2023 sera beaucoup plus faible que dans le passé, en raison d'un coût moyen de production beaucoup plus bas et qui continuera à baisser


Evolution du LCOE moyen pondéré lié aux installations PV installées sur la période 2016-2023

Le coût du soutien au photovoltaïque, rapporté aux volumes produits par les nouvelles installations, va continuer de diminuer sur la période 2016-2023. Autour de 76 €/MWh en 2017, il passe à 51 €/MWh en 2023. En comparaison, le coût du soutien versé en 2015 pour les installations historiques (installées entre 2006 et 2015) est d'environ 335 €/MWh.

Evolution du soutien requis pour le déploiement du PV (≡ CSPE)

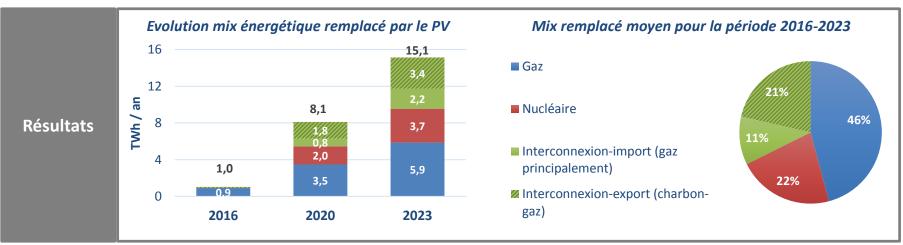
Sc. prix de marché intermédiaire (passage de 42,7 en 2016 à 45,8 €/MWh en 2023)

Dans la trajectoire PPE de référence (+ 13 GWc), le coût annuel de soutien (≡ CSPE) lié aux nouvelles installations **resterait très limité**, entre 0,6 et 1,1 Md€ à horizon 2023 (20 et 30% de la CSPE PV totale). Soit en moyenne **0,84 Md€ en 2023**, à comparer à **2,47 Md€ pour les 7 GWc existants.**

De plus, la méthode actuelle de la CRE pour le calcul des coûts évités par le PV n'intègre pas les **bénéfices liés à la réduction du prix de marché** apportée par le PV à coût marginal nul. Ces bénéfices, faibles historiquement, deviendront importants à horizon 2023 et **compenseront en partie les coûts du soutien**.

Sensibilité par rapport au prix de marché de gros de l'électricité

- Dans un scénario de prix bas (hyp: 31,5 €/MWh): le nouveau soutien au PV représenterait ≈ 1,1 Md€ en 2023 (soit ≈ 30 % de la CSPE totale)
- Dans un scénario de prix haut (hyp: 60 €/MWh): le nouveau soutien au PV représenterait ≈ 0,6 Md€ en 2023 (soit ≈ 20 % de la CSPE totale)

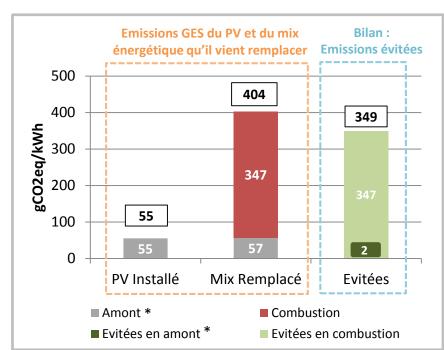

Mix énergétique évité grâce au développement du photovoltaïque

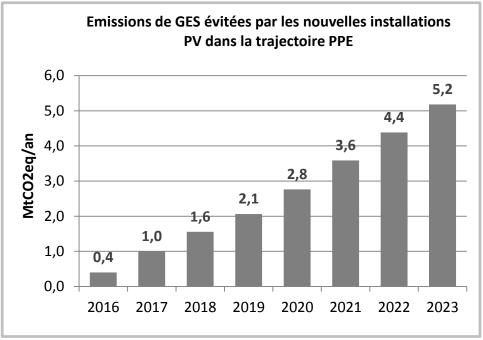
L'injection d'un volume d'énergie photovoltaïque dans le système électrique permet d'éviter la production d'un volume équivalent d'électricité à partir de moyens de production non renouvelables (nucléaires ou fossiles). Cette production évitée induit des bénéfices environnementaux qui seront détaillés dans la suite du document.

La prévision de ce mix énergétique remplacé sur la période 2016-2023 est soumise à de nombreuses hypothèses :

Hypothèses

Paramètres	Sources utilisées	Impact
Evolution de la capacité nucléaire installée	Scénario intermédiaire (63% de nucléaire en 2025) entre actuel et loi TECV.	•
Evolution de la capacité fossile (gaz, charbon, fioul)	Basé sur une moyenne des scénarios thermiques « bas » et « haut » de RTE (Bilan prévisionnel 2016)	
Evolution des capacités d'interconnexion	RTE (schéma décennal de développement du réseau)	
Evolution de la consommation	RTE (BP 2016)	



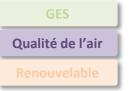

Sources : données RTE, modèles et analyses I Care & Consult

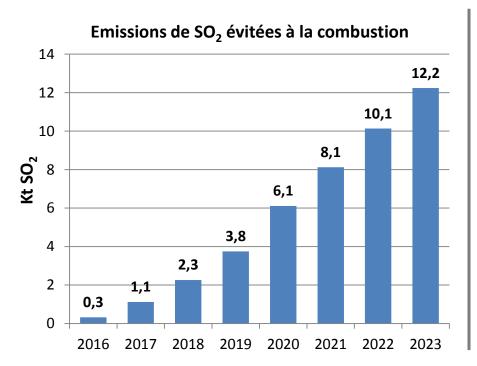
43

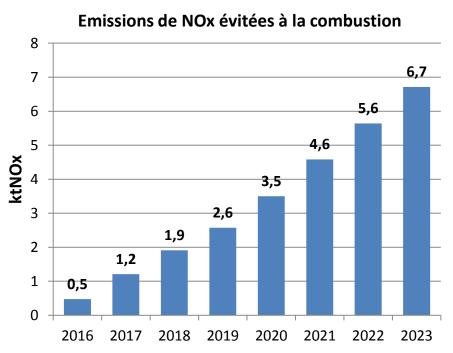
Le photovoltaïque comme moyen de réduire significativement les émissions de GES du secteur électrique

En moyenne sur la période 2016-2023, l'énergie photovoltaïque pourrait permettre l'économie de près de 350 gCO_{2eq}/kWh produit (estimation I Care & Consult, sur la base des émissions de GES des moyens de production que vient remplacer le photovoltaïque).

A horizon 2023, cela pourrait permettre une réduction des émissions de GES de près de 5,2 MtCO_{2eg} / an (/ à un scénario sans déploiement du PV après 2016). Ce qui équivaut à 22% des émissions de GES du secteur électrique français en 2015, ou encore aux émissions annuelles de plus de 2,7 M de voitures neuves (2016).

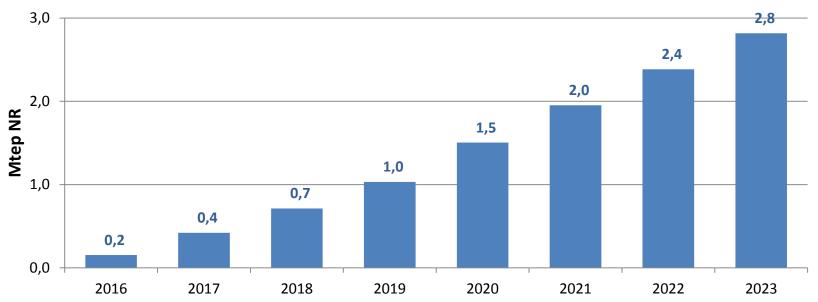

Source: Base Carbone ADEME (facteurs d'émissions), RTE « Bilan électrique 2015 » (pour les émissions du secteur électrique), ADEME (pour émissions véhicules), modélisation I Care & Consult pour la scénario de référence


* Les émissions amont correspondent aux émissions indirectes liées à la construction de l'installation de production et à l'approvisionnement de la centrale en énergie primaire,



L'énergie photovoltaïque (installée après 2015) pourrait permettre d'économiser près de **12 200 tonnes de NOx et 6700 tonnes de SO₂ par an à horizon 2023** (sc. PPE). Ce qui équivaut aux émissions annuelles plafonds de NOx (sous la norme Euro6) de 4,9 M de voitures Diesel.

Au total sur la période 2016-2023, cela représenterait une économie de près de **44 000 tonnes de NOx et 27 000 tonnes de SO₂** dans le scénario PPE (réf)



Source: Rapport National d'Inventaire pour la France CCNUCC (pour les facteurs d'émission), ministère du développement durable (pour émissions véhicule), modèle et analyse I Care & Consult

Le photovoltaïque comme moyen de réduire l'utilisation de ressources non renouvelables

GES
Qualité de l'air
Renouvelable

Energie Primaire NR économisée à la combustion (en Mtep NR)

Le développement du photovoltaïque selon la trajectoire PPE permettrait d'économiser près de 11 Mtep d'énergie primaire non renouvelable (EP NR) sur la période 2016 − 2023 (soit ≈ 130 TWh d'EP NR).

En 2023 les économies annuelles de consommation en énergie primaire non renouvelables pourraient avoisiner **34 TWh d'EP NR / an** (2,9 Mtep d'EP NR), ce qui représente près de 3 % de l'énergie primaire non renouvelable consommée pour l'électricité en France en 2015.

Source : MEEM « Chiffres-clés de l'énergie – édition 2016 », modèle et analyse I Care & Consult


EP = Energie Primaire **NR** = Non Renouvelable

Le photovoltaïque, une énergie à fort pouvoir de décentralisation et d'intégration, malgré sa faible densité énergétique

Source: ENERPLAN, CGDD « Sols et environnement – Chiffres clés » (2015). Hypothèse occupation centrales au sol: 2 ha/MWc.

La trajectoire PPE (selon scénario de référence) entraînerait, sur la période 2016-2023, une emprise au sol additionnelle d'environ **1 600 ha/an.**

Au global, en 2023, les nouvelles centrales au sol installées (6 GWc) pourraient ainsi représenter une surface de **12 800 hectares**, soit **0,05 % des régions françaises méridionales (PACA, Occitanie, Nouvelle Aquitaine, Rhône-Alpes-Auvergne)** ou encore ≈ 0,25 % de la surface occupée par les sols artificialisés en métropole en 2014.

De plus, en raison des dispositions réglementaires en vigueur, la croissance du photovoltaïque se réalise sur des **surfaces sans potentiel agricole** (hors toiture sur serres). L'artificialisation est temporaire car toute installation photovoltaïque est totalement **réversible**, l'usage de béton étant très limité, à la fin de vie du parc solaire, les terrains peuvent retrouver leur état d'origine.

Le choix d'un scénario « centrale au sol » augmenterait l'emprise au sol d'environ 40%, tandis que le scénario « toiture » la diminuerait de 36%.

... une utilisation des sols qui peut être optimisée via le choix de sites propices et le développement de nouveaux modes de valorisation

Patrimoine terrien

Réhabilitation de sols usagés, revalorisation de sols à faible valeur et sous utilisés.

Exemple

- A Pujaut dans le Gard, une ancienne friche ferroviaire RFF polluée et anciennement utilisée comme décharge pour matériaux de construction et métaux lourds a été revalorisée.
- A Blaye les Mines, Cagnac les Mines et Le Garric, des anciennes verses et terrils issus de l'exploitation minière et ainsi stériles ont pu être revalorisées également.
- A Chalmoux, ce sont 7 ha qui ont été conservés à l'état de friche pour favoriser le **développement de la biodiversité**. De manière similaire, le parc solaire de Pujaut fait appel à l'**éco-tonte**. Le parc agri-solaire d'Ortaffa allie quant à lui **élevage** et production solaire, a mis en place des **couloirs de migration** pour la faune, et des **chênes centenaires** ont pu être conservés au sein du parc.

Patrimoine immobilier

Un projet photovoltaïque amène des améliorations sur le bâti, ou de manière plus générale sur la fonction du bâtiment

Exemple

- L'installation de systèmes photovoltaïques sur un bâtiment contribue à l'amélioration de sa performance environnementale et peut conduire alors à une hausse de sa valeur immobilière (« valeur verte »). Il n'existe toutefois encore aucun consensus sur les méthodes de chiffrage de cette valeur verte (cf. travaux du Plan Bâtiment Durable).
- A l'image du projet SCE à Saint Gilles dans le Gard, les apports annexes d'un projet solaire peuvent être le désamiantage de la toiture, la mise aux normes de désenfumage ou encore la rénovation de l'étanchéité.
- Pour des particuliers, des bénéfices comme le renforcement de la charpente, la **réfection** de la toiture Nord peuvent être également considérés.

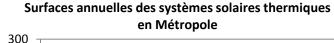
Sensibilisation des population aux enjeux énergie-climat

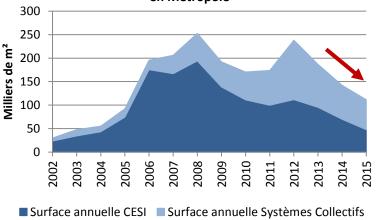
Exemple

- A Carmaux, un parcours pédagogique intitulé « Du Charbon au Soleil » a été créé avec le Centre Permanent d'Initiatives pour l'Environnement (CPIE) des Pays Tarnais.
- A Chalmoux et Ortaffa, la centrale agit comme un vecteur de sensibilisation aux enjeux énergétiques avec des visites réalisées par exemple dans le cadre d'un défi régional « Familles à Energie Positive ».
- La sensibilisation passe également par des bâtiments public avec des installations photovoltaïques comme la maison des services de Sauer-Pechelbronn et qui amènent ses utilisateurs à adopter un comportement en cohérence avec les enjeux énergie-climat.

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
 - Coûts 2016
 - Scénarios de déploiement
 - Baisse des coûts de production de la chaleur solaire
 - Compétitivité
 - Retombées à moyen terme
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion





Contexte actuel du solaire thermique en France

Constat

- 2015-2016 : un marché peu dynamique et en décroissance malgré une tendance à la baisse des coûts. Plusieurs raisons à cela :
 - Baisse de la compétitivité liée à la baisse du prix des énergies fossiles
 - Pour le collectif: croissance de 2009-2012 avec la perspective BEPOS. Mais arrêt soudain avec la nouvelle RT 2012 et sa dérogation donnant le droit à consommer 15% de plus que prévu.
 - Pour l'individuel: Effet de substitution PV et CET lié à des conditions réglementaires favorables (tarif d'achat, non plafonnement CITE)
 - o Contre références dans l'habitat social

Tendances

- Sans une dynamique de structuration de la filière et une amélioration significative du cadre réglementaire, le Scénario PPE est inatteignable
- La compétitivité du ST est bonne par rapport aux autres EnR, notamment dans le collectif. Elle se renforce, mais son choix demeure fortement dépendant du prix du gaz et du niveau de la Contribution Climat Energie, ainsi que du prix de l'électricité.
- 2017-2025: le potentiel de baisse de coûts supplémentaire n'est atteignable que par un effet volume
- L'atteinte de ces objectifs PPE pourrait permettre de faire passer les emplois de la filière de 1 500 à environ 10 000 emplois.

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
 - Coûts 2016
 - Scénarios de déploiement
 - Baisse des coûts de production de la chaleur solaire
 - Compétitivité
 - Retombées à moyen terme
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

Type de système

Positionnement actuel

Caractéristiques retenues pour l'étude

Chauffe-eau solaire individuel (CESI)

- Représente ≈ 45% des installations ST en 2015
- Un nombre de nouvelles installations en forte baisse (-30% entre 2014 et 2015), tendance similaire dans le reste de l'Europe
- Principalement installé dans le neuf (60%)

- CESI classique de 4,5 m²
- Capteurs plans vitrés
- Chiffres pour l'existant principalement

Système solaire combiné (SSC)

- Représente moins de 5% des installations ST en 2015
- Connaît un recul encore plus net que le CESI (-44 % entre 2014 et 2015)
- Principalement installé dans l'existant, lors de rénovation (84%)

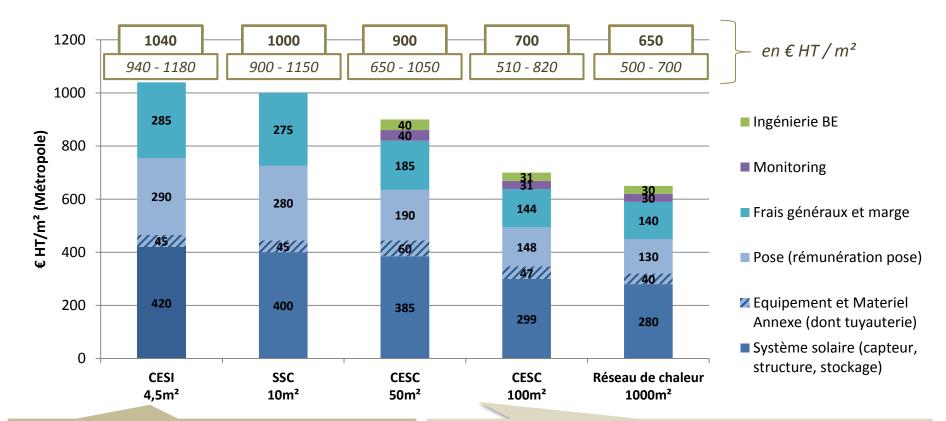
SSC de 10m²

Chauffe-eau solaire collectif (CESC)

- Représente près de 50% des installations ST en 2015
- A également connu un fort recul entre 2013 et 2014 (-23%)
- S'installe principalement sur des logements collectifs (55%) et du tertiaire (40%, surtout du tertiaire médicalisé), plus marginalement pour industrie et agricole, avec toutefois une croissance sur ces secteurs.
- CESC avec échangeur immergé et appoint séparé
- Les CESCI (CESC individualisé) et CESCAI (CESC avec appoint individualité) ne sont pas considérés, tout comme le solaire thermique pour usages industriels et agricoles.
- Système de 50m² pour logement collectif (1m²/lgmt) et système de 100m² pour renforcer le taux de couverture à besoin constant (2m²/lgmt)

Système solaire pour réseau de chaleur

- Encore à l'état embryonnaire en France, le solaire thermique pour réseau de chaleur ne représentait que 0,5 % des systèmes ST en 2014.
- Installation au sol de 1000 m² à 2000 m² environ.

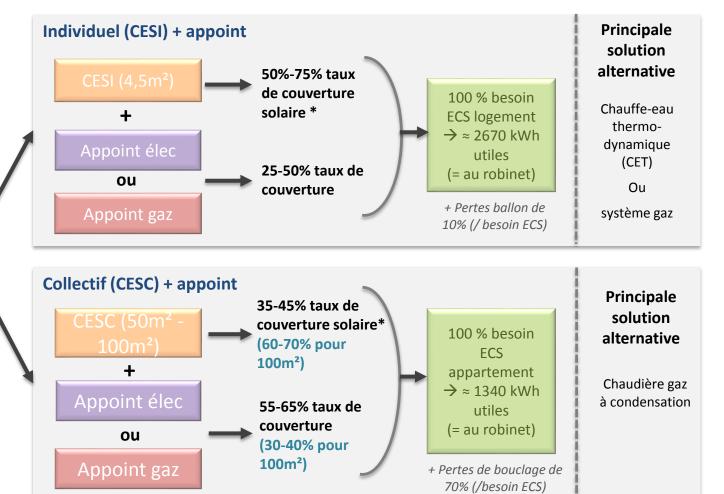

Source: Observ'ER, « Suivi du marché 2015 des applications individuelles solaires thermiques » (juillet 2016), « Etude qualitative du marché des installations solaires thermiques collectives » (novembre 2016)

CAPEX 2016 des systèmes solaires thermiques

- Répartition à quasi 50%-50% entre coût du matériel et coût de l'installation + marge.
- La fourchette étroite retenue est due à une moins grande hétérogénéité dans les coûts du CESI, les montages étant assez similaires d'un logement à un autre (standardisation, format kit solaire).

Source: Observ'ER, Enerplan, ADEME, BatiEtude AXIOE MEDIA, analyse I Care & Consult

- En revanche, pour le collectif, la grande variétés des situations et offres conduit à une fourchette de coûts très large.
- Les coûts sont également globalement répartis entre achat matériel et pose.
- Le CESC 100m² répond ici à un même besoin ECS que le CESC 50m². Sa plus grande surface de capteurs permet d'accroître le taux de couverture (jusqu'à 75%) et de réaliser des économies d'échelles sur le CAPEX (rapporté au m²). Ce type de système intègre souvent un système d'autovidange ou de décharge dans la boucle de distribution afin d'éviter les problématiques de surchauffe.



Des systèmes solaires thermiques qui nécessitent d'être couplés pour répondre de façon optimale au besoin en chaleur pour

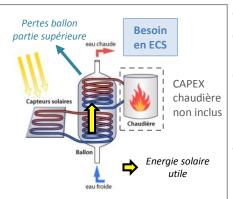
l'usage ECS

En pratique, le système solaire thermique n'assure pas 100% des besoins en ECS et a besoin d'être couplé à un autre système type appoint gaz ou appoint électrique

^{*} Taux de couverture solaire = Part des besoins annuels utiles (au robinet) couverts par l'énergie solaire. Il ne comprend pas les pertes de bouclage et de stockage. La fourchette de taux de couverture correspond à la différence entre Ile-de-France (fourchette basse) et PACA (fourchette haute).

CESC

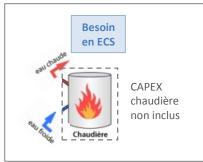
Compétitivité du solaire thermique dans l'individuel en 2016


Comparatif de certaines solutions gaz pour la production d'ECS

Cadre général

- Répondre au besoin en ECS d'une famille de 4 personnes dans un logement individuel existant [besoin ECS de 2670 kWh/m²].
- Prix gaz : 46,3 €/MWh pour tarif résidentiel B1 Gaz (hors part fixe et TVA). Hausse basée sur scenario new policies du WEO 2016 (AIE) → ≈ +1,7 %/an
- Taux d'actualisation : 3,9 % (en cohérence avec étude PV pour les petits segments)

Chauffe-eau solaire individuel (CESI) avec appoint gaz

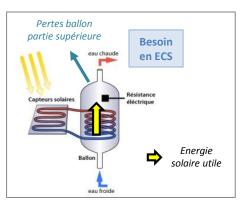

- Système de type classique (non optimisé), avec capteurs plans vitrés, dédié à l'habitat individuel
- Surface de capteurs considérée : 4,5 m²
- Durée de vie : 20 ans
- CAPEX : **1045 € HT/m²**, soit 4700 € au total
- Maintenance : 10 € HT/m²/an, soit 45 €/an au total
- Productible (énergie solaire utile par m² de capteur) : IdF : **300** kWh/m²/an, Pays de la Loire : **360** kWh/m²/an, PACA : **450** kWh/m²/an
- Couplage avec une chaudière gaz à condensation (existante), via un 2ème échangeur immergé dans la partie supérieure du ballon.

- Rendement réel chaudière : 70%
- CAPEX chaudière non considéré (car déjà présente pour le chauffage)
- L'appoint (résistance élec ou 2ème échangeur) étant souvent inclus dans le pack solaire, on ne considère pas de surcoût à l'investissement lié à l'appoint.
- Coût maintenance associé à l'appoint gaz : 8€
 HT/an (intervention annuelle de 110€ pour la chaudière complète, rapportée à la part produite par le gaz pour l'ECS : soit 7 % du total)
- Pertes partie supérieure du ballon : 10% du besoin utile en ECS

Système gaz

- On considère ici que la production d'ECS est directement assurée par la chaudière existante (ou installée dans le cadre d'une rénovation plus globale).
- Chaudière gaz à condensation avec un rendement de 70% en conditions réelles pour la production d'FCS.
- Durée de vie : 20 ans
- CAPEX : supposé nul (pas de surinvestissement par rapport au cas de gauche, l'investissement de la chaudière n'étant pas pris en compte)
- Maintenance: 14 € HT/an (fraction d'un contrat de maintenance plus global portant sur chauffage et ECS)

Compétitivité du solaire thermique dans l'individuel en 2016


Comparatif de solutions électriques pour la production d'ECS

Cadre général

- Répondre au besoin en ECS d'une famille de 4 personnes dans un logement individuel existant [besoin ECS de 2670 kWh/m²].
- Prix élec : 122 €/MWh pour tarif bleu (hors part fixe et TVA) en 2016 (CRE/EDF). Hausse de + 3 %/an (basé sur historique à 5 ans)
- Taux d'actualisation : 3,9 % (en cohérence avec étude PV pour les petits segments)

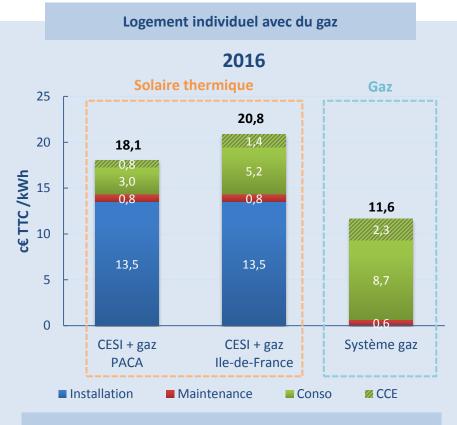
Chauffe-eau solaire individuel (CESI) avec appoint électrique

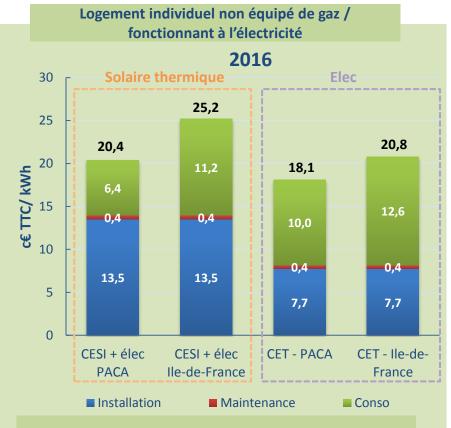
- Système de type classique (non optimisé), avec capteurs plans vitrés, dédié à l'habitat individuel
- Surface de capteurs considérée : 4,5 m²
- Durée de vie : 20 ans
- CAPEX: **1045 € HT/m²**, soit 4700 € au total
- Maintenance : 10 € HT/m²/an, soit 45 €/an au total
- Productible (énergie solaire utile par m² de capteur) : IdF : **300** kWh/m²/an, Pays de la Loire : **360** kWh/m²/an, PACA : **450** kWh/m²/an

- Couplage avec résistance électrique intégrée.
 - CAPEX appoint élec : 0€ (car considéré inclus dans le pack solaire).
 - Coût maintenance associé à l'appoint élec : 0 € HT/an

■ Pertes partie supérieure du ballon : 10% du besoin utile en ECS

CFT


- CAPEX de 2300 € (source ADEME)
- Durée de vie : 15 ans
- COP en conditions <u>réelles</u>: IdF: 1,5; Pays de la Loire: 1.7 et PACA: 1.9
- Maintenance : 10 € HT / an (système thermo ne nécessitant pas de maintenance a priori. Si présence de maintenance : contrat d'intervention classique autour de 100€/an).


■ La comparaison des systèmes se faisant sur une base de 20 ans d'exploitation, le système CET est supposé renouvelé la 16ème année (seul 1/3 du CAPEX actualisé est alors considéré)

Compétitivité du solaire thermique dans l'individuel en 2016

Dans l'individuel, en 2016, le poids de l'investissement initial ne permet pas encore au CESI de concurrencer les solutions traditionnelles au gaz, en raison notamment d'un prix du gaz actuellement très bas et d'une taxe carbone (CCE) encore faible.

 Pour les logements ne se chauffant pas au gaz, le CET constitue encore en 2016 une alternative moins chère que le CESI qui témoigne d'un coût à l'investissement encore élevé (mais susceptible de baisser significativement).

Sources: Analyse I Care & Consult (les hypothèses sont présentées en annexe et dans les deux diapositives précédentes)

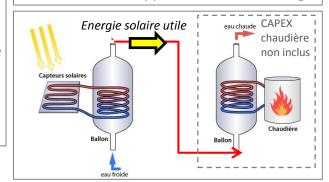
59

^{*} kWh utile d'ECS = kWh dont dispose effectivement l'utilisateur pour répondre à son besoin (correspond à l'énergie disponible au robinet)

Compétitivité du solaire thermique dans le collectif en 2016

Comparatif des solutions disponibles pour la production d'ECS

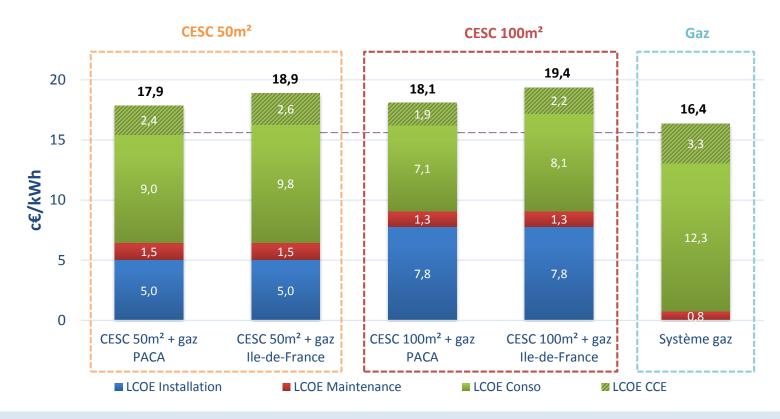
Cadre général


- Répondre au besoin en ECS d'un logement collectif d'une cinquante de logements de 2 personnes environ, pour un besoin en ECS par logement d'environ **1310 kWh/an**.
- Pertes de bouclage de **70**% correspondant à une isolation moyenne des tuyauteries (les bâtiments neufs ont de meilleurs taux).
- Les pertes du ballon solaire sont déjà prises en compte dans l'énergie solaire utile (ie dans les hypothèses de productibles)
- Taux d'actualisation : 3,9 % (en cohérence avec étude PV pour les petits segments)

CESC 50m² + gaz

- CESC avec échangeur immergé et appoint séparé
- Surface de capteurs considérée : 50 m²
- CAPEX : 900 € HT/m²
- Maintenance : 12 € HT/m²/an
- Productible : IdF : 450 kWh/m²/an, 520 pour Pays de la Loire et 600 pour PACA
- CAPEX appoint hydraulique : 0€ (chaudière déjà existante, coût raccord négligeable)
- Maintenance pour appoint : 7 € HT / an / log (fraction de la maintenance de la chaudière existante, utilisée aussi pour le chauffage
- Les pertes ballon sont déjà prises en compte en amont dans les productibles solaires

CESC 100m² + gaz


- Surface installée plus grande pour un même besoin en ECS (que pour le 50m²), enfin d'augmenter le taux de couverture
- Surface de capteurs considérée : 100 m²
- CAPEX : 700 € HT/m²
- Maintenance : 10 € HT/m²/an
- Productible: 380 kWh/m²/an IdF, 430 pour Pays de la Loire et 470 pour PACA
- CAPEX appoint hydraulique : 0 €
- Maintenance appoint: 7 € HT / an / log

Système gaz

- Production d'ECS directement assurée par la chaudière collective existante (ou installée dans le cadre d'une rénovation plus globale).
- Rendement de la chaudière : 70% en condition réelles d'utilisation pour la production d'ECS
- CAPEX: 0€ (pas de surinvestissement par rapport au cas de gauche, l'investissement de la chaudière n'étant pas pris en compte)
- Maintenance : 10 € HT/an/log (fraction de la facture globale de maintenance pour la chaudière : autour de 70 € / an / log).

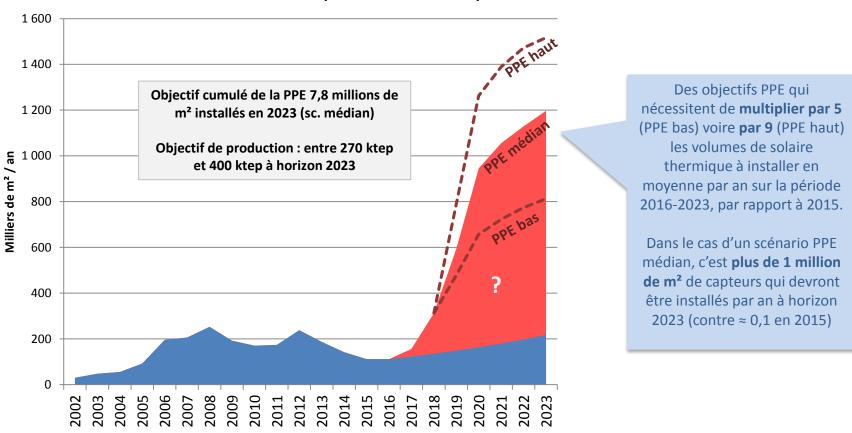
Compétitivité du solaire thermique dans le **collectif en 2016**Coût global de production d'un kWh utile d'ECS (sans soutien, HT)

En 2016, le solaire thermique dans le collectif n'est pas encore rentable, sans soutien, face à une solution 100% gaz, notamment en raison d'un prix du gaz encore bas actuellement. Toutefois, cette équation est susceptible de changer rapidement (cf. suite).

En 2016, le système 100m², avec un taux de couverture plus élevé, apparaît légèrement moins compétitif que le système 50m² (notamment en raison du surcoût à l'investissement et d'un prix bas du gaz), mais la tendance s'inverse très rapidement, dès 2017, au profit du système 100m² à fort taux de couverture (cf. suite de l'analyse).

Sommaire

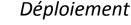
- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
 - Coûts 2016
 - Scénarios de déploiement
 - Baisse des coûts de production de la chaleur solaire
 - Compétitivité
 - Retombées à moyen terme
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

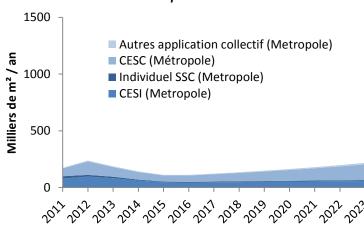


Scénario PPE pour le solaire thermique : des objectifs très ambitieux et a priori inatteignables sans amélioration significative du cadre réglementaire

Sources: SoeS; Observ'ER; Ministère MEDDE; ENERPLAN; ADEME; UNICLIMA

Projection à 2023: modélisation de deux scénarios contrastés pour la filière solaire thermique

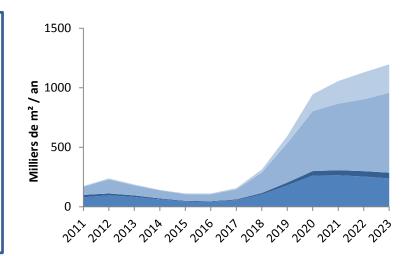

Scénario de référence
Business-asusual


Descriptif

- Faible reprise de la croissance (+10% / an)
- Pas de structuration de la filière mais rattrapage des volumes à hauteur de 2012

Volumes

1,3 millions de m² installés sur la période 2016-2023


Scénario PPE

 Fort développement de la filière ST et montée en puissance progressive pour s'inscrire sur la trajectoire PPE

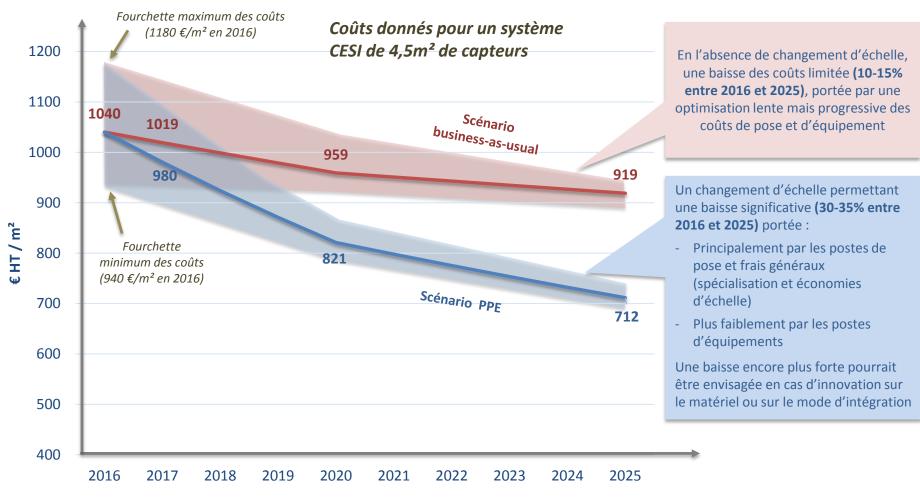
- Forte augmentation des volumes en collectif
- Augmentation des installations dimensionnées avec de fort taux de couverture

5,5 millions de m² installés sur la période 2016-2023, pour atteindre une surface cumulée de 7,8 millions de

m² en 2023

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
 - Coûts 2016
 - Scénarios de déploiement
 - Baisse des coûts de production de la chaleur solaire
 - Compétitivité
 - Retombées à moyen terme
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

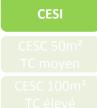


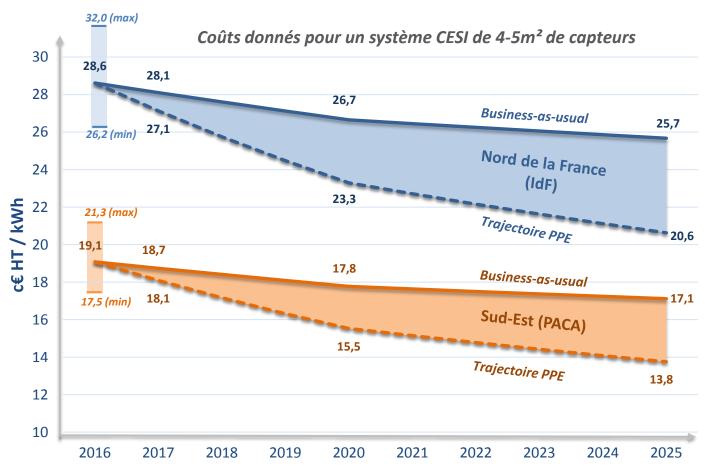
CESI

TC moyen

TC élevé

Projection CESI 2025 : une baisse des coûts des systèmes dépendante des volumes qui seront installés en France

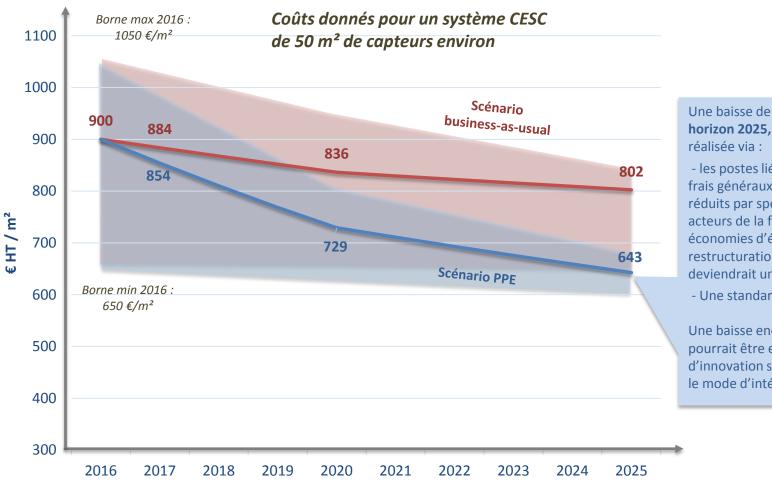




Coût de la chaleur produite par un CESI (LCOE solaire) : une amélioration de la compétitivité qui peut être accélérée en suivant une trajectoire PPE

Une baisse des coûts potentielle d'environ 10% entre 2016 et 2025 dans un scénario « business as usual » et qui peut être portée à plus de 30% en suivant une trajectoire PPE (voire plus en cas d'innovation sur le matériel ou sur le mode d'intégration).

Hypothèses : durée de vie de 20 ans pour le CESI, productibles utiles de 300 kWh/m²/an en Ile-de-France et de 450 kWh/m²/an dans la région PACA, taux d'actualisation de 3,9%



Projection CESC 2025 (50m²): Une baisse des coûts dans le collectif qui peut potentiellement être significative

CESI

CESC 50m²
TC moyen

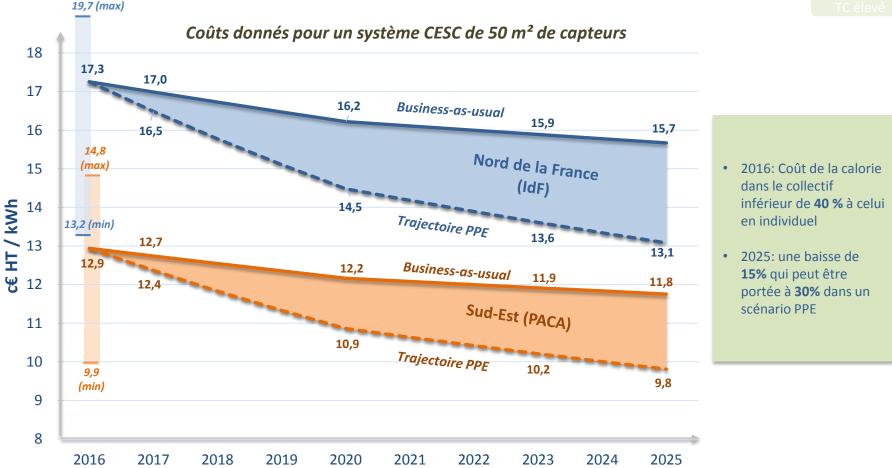
CESC 100m²

Une baisse de près de **30% à** horizon **2025**, qui pourra être réalisée via :

- les postes liés à la pose et aux frais généraux, qui peuvent être réduits par spécialisation des acteurs de la filière, par économies d'échelle et par restructuration de l'offre qui deviendrait une offre de service.
- Une standardisation du matériel

Une baisse encore plus forte pourrait être envisagée en cas d'innovation sur le matériel ou sur le mode d'intégration

Source : analyse I Care & Consult, données Observ'ER, ADEME, Enerplan



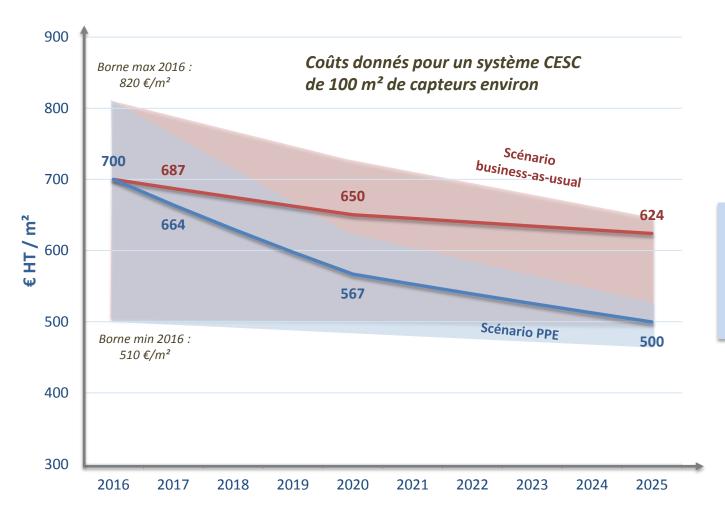
Coût de la chaleur produite par un CESC 50m² (LCOE solaire) : une amélioration de la compétitivité encore plus importante

CESI

CESC 50m² TC moyen

CESC 100m²

Hypothèses : durée de vie de 20 ans pour le CESC, productibles utiles de 450 kWh/m²/an en Ile-de-France et de 600 kWh/m²/an dans la région PACA, taux d'actualisation de 3,9%



Projection CESC 2025 (100m²): Une baisse des coûts dans le collectif qui peut potentiellement être significative

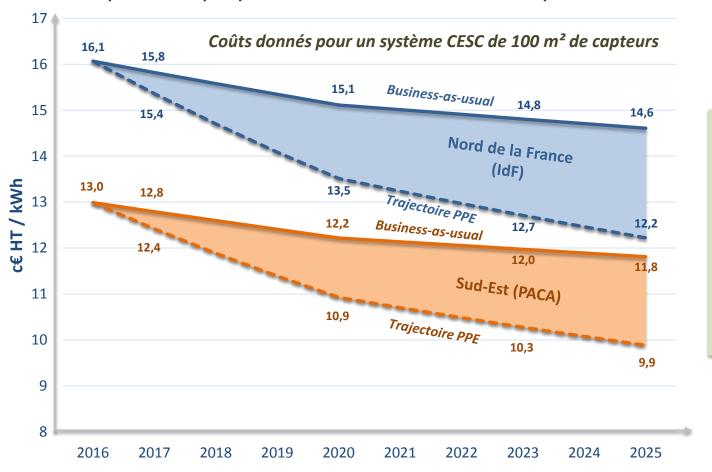
CESI

CESC 50m²
TC moven

CESC 100m² TC élevé

Des facteurs de baisse similaire pour le système 100m² à fort taux de couverture, que pour le système 50m²

Source : analyse I Care & Consult, données Observ'ER, ADEME, Enerplan



Coût de la chaleur produite CESC 100m² (LCOE solaire) : une augmentation du taux de couverture des besoins et une baisse du CAPEX par m² qui permet d'accroître la compétitivité dans le Nord.

CESI

CESC 50m²

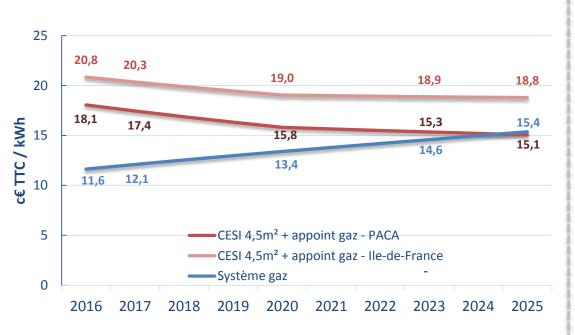
CESC 100m² TC élevé

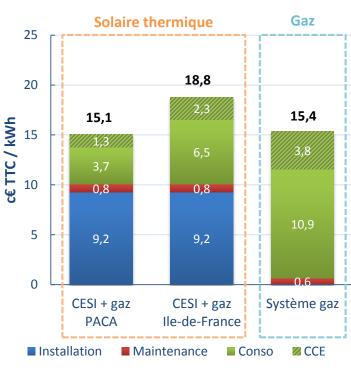
En comparaison avec un CESC 50m², le CESC 100m² génère des coûts de la chaleur similaires dans le Sud (car la baisse des coûts est compensée par une dégradation plus forte de la productivité) mais inférieurs de près de 5-10% dans le Nord.

Hypothèses : durée de vie de 20 ans pour le CESC, productibles utiles de 380 kWh/m²/an en Ile-de-France et de 470 kWh/m²/an dans la région PACA, taux d'actualisation de 3,9%

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
 - Coûts 2016
 - Scénarios de déploiement
 - Baisse des coûts de production de la chaleur solaire
 - Compétitivité
 - Retombées à moyen terme
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion




CESC

Evolution du coût du kWh utile : dans l'individuel au gaz, le solaire thermique <u>avec appoint</u> devient compétitif sans soutien dans le Sud à horizon 2025

Coût du kWh utile - Individuel gaz (TTC)

Zoom sur 2025

La baisse des CAPEX solaires et la hausse de la CCE entre 2016 et 2025 (d'un facteur 3-4) permettraient de réduire significativement l'écart de coût entre le solaire et le gaz, avec une **rentabilité du solaire** <u>sans soutien</u> qui se dessinerait dès lors dans le Sud à horizon 2025.

^{*} NB : la compétitivité s'évalue ici sur la base de la différence de coût complet entre le système solaire avec son appoint et le système gaz classique. Les systèmes considérés, avec la présence d'un appoint pour le CESI), permettent de répondre à 100% du besoin en ECS.

Analyse de sensibilité sur la rentabilité d'une installation individuelle avec appoint gaz en région PACA

	Référence		Doubl	ement de la carbone	taxe		CAPEX de 509 2025/2016	% en	Hausse	de 5%/an d du gaz	u prix		le vie CESI 25 ieu de 20 ans	
Rentabilité	Le projet est- il rentable ?	TRI	Rentabilité	Le projet est- il rentable ?	TRI	Rentabilité	Le projet est- il rentable ?	TRI	Rentabilité	Le projet est- il rentable ?	TRI	Rentabilité	Le projet est- il rentable ?	TRI
2016	NON	-2%	2016	NON	0%	2016	NON	-2%	2016	NON	-1%	2016	NON	1%
2017	NON	-1%	2017	NON	1%	2017	NON	-1%	2017	NON	0%	2017	NON	1%
2018	NON	0%	2018	NON	2%	2018	NON	0%	2018	NON	1%	2018	NON	2%
2019	NON	1%	2019	NON	3%	2019	NON	1%	2019	NON	2%	2019	NON	3%
2020	NON	2%	2020	NON	4%	2020	NON	3%	2020	NON	3%	2020	NON	4%
2021	NON	2%	2021	OUI	5%	2021	NON	4%	2021	NON	4%	2021	NON	4%
2022	NON	3%	2022	OUI	5%	2022	OUI	5%	2022	OUI	5%	2022	OUI	5%
2023	NON	3%	2023	OUI	6%	2023	OUI	6%	2023	OUI	6%	2023	OUI	5%
2024	NON	4%	2024	OUI	7%	2024	OUI	7%	2024	OUI	7%	2024	OUI	6%
2025	OUI	5%	2025	OUI	8%	2025	OUI	9%	2025	OUI	7%	2025	OUI	6%

- Une doublement de la contribution climat énergie [levier de la politique publique] par rapport à la trajectoire prévue actuellement dans la loi, permettrait de rendre le solaire thermique compétitif dès 2021.
- Innovations et meilleure structuration de la filière, en accélérant la baisse des coûts (hyp: -50% en 2025 / 2016), rendront le solaire compétitif peu après 2020 (au lieu de 2025).
- Des perspectives de hausse significativement plus forte des prix du gaz (hyp: +5%/an), auront également un effet accélérateur sur la compétitivité du solaire thermique.
- Enfin, l'hypothèse de durée de vie des systèmes à un fort impact sur la compétitivité. Un système qui dure 25 ans au lieu de 20 ans (à niveau de maintenance égal) voit ainsi sa compétitivité fortement renforcée.

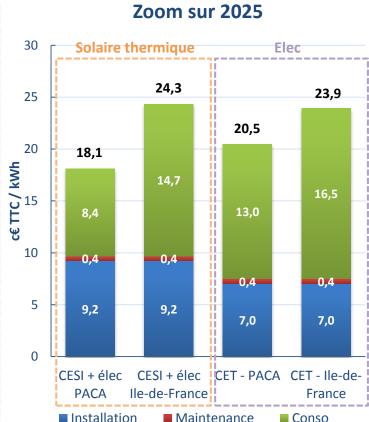
La rentabilité est regardée sur la base du critère de la VAN >0 (donc actualisé).

Le **taux de rentabilité interne** correspond au taux d'actualisation permettant d'annuler la VAN. Plus ce taux est élevé, plus l'investissement est rentable pour un acteur donné.

La TVA est comprise

Attention: L'allongement de la durée de vie (25 ans au lieu de 20 ans) est réalisé à OPEX constant

Pour rappel, la contribution climat-énergie, telle que définie actuellement par la loi, prend les valeurs suivantes : $22 \notin tCO_2$ en 2016, $56 \notin tCO_2$ en 2020 et 100 $\notin tCO_2$ en 2030



Dans l'individuel, le solaire thermique <u>avec appoint électrique</u> devient compétitif sans soutien dans le Sud dès 2020 face au CET

Compétitif à partir de 2019 dans le Sud, le CESI avec appoint électrique conforterait sa compétitivité face au CET à horizon 2025 en offrant un coût de production près de 10% moins cher.

Dans le Nord (IdF), la compétitivité sera plus tardive et pourrait s'établir aux alentours de 2025.

75

Analyse de sensibilité sur la rentabilité d'une installation individuelle avec appoint électrique en région PACA (/ CET)

Référence PACA					
Rentabilité	Le projet est- il rentable ?	TRI			
2016	NON	0%			
2017	NON	2%			
2018	NON	3%			
2019	OUI	4%			
2020	OUI	6%			
2021	OUI	7%			
2022	OUI	8%			
2023	OUI	9%			
2024	OUI	10%			
2025	OUI	11%			

Hausse de 5%/an du prix de l'élec					
Rentabilité	Le projet est-il rentable ?	TRI			
2016	NON	2%			
2017	NON	3%			
2018	OUI	5%			
2019	OUI	6%			
2020	OUI	8%			
2021	OUI	9%			
2022	OUI	10%			
2023	OUI	12%			
2024	OUI	13%			
2025	OUI	15%			

2025/2016					
Rentabilité	Le projet est- il rentable ?	TRI			
2016	NON	0%			
2017	NON	2%			
2018	NON	4%			
2019	oui	6%			
2020	oui	9%			
2021	oui	12%			
2022	oui	16%			
2023	oui	21%			
2024	OUI	32%			
2025	OUI	65%			

Baisse CAPEX de 50% en

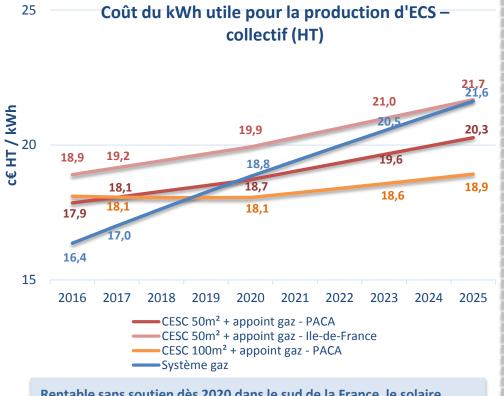
Durée de	Durée de vie CESI 25 ans (au lieu de 20 ans)					
Rentabilité	Rentabilité Le projet estill rentable ?					
2016	NON	2%				
2017	NON	3%				
2018	OUI	4%				
2019	oui	6%				
2020	OUI	7%				
2021	OUI	8%				
2022	oui	9%				
2023	OUI	10%				
2024	OUI	11%				
2025	OUI	12%				

Une hausse plus forte du prix de l'électricité et/ou une baisse plus conséquente des coûts du solaire thermique, permettraient d'avancer l'année de rentabilité du solaire thermique (par rapport à un CET) et surtout entraîneraient de très bonnes rentabilités pour le solaire thermique au-delà de 2020 (avec des TRI > 10%).

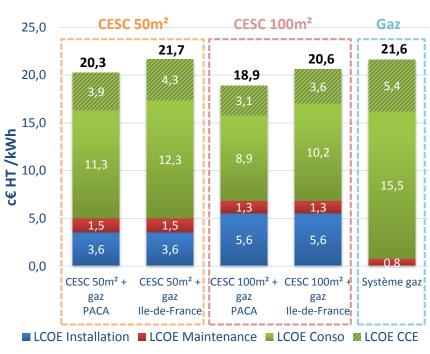
L'hypothèse de durée de vie des systèmes à un fort impact sur la compétitivité. Un système qui dure 25 ans au lieu de 20 ans (à niveau de maintenance égal) voit ainsi sa compétitivité fortement renforcée.

La **rentabilité** est regardée sur la base du critère de la VAN >0 (donc actualisé).

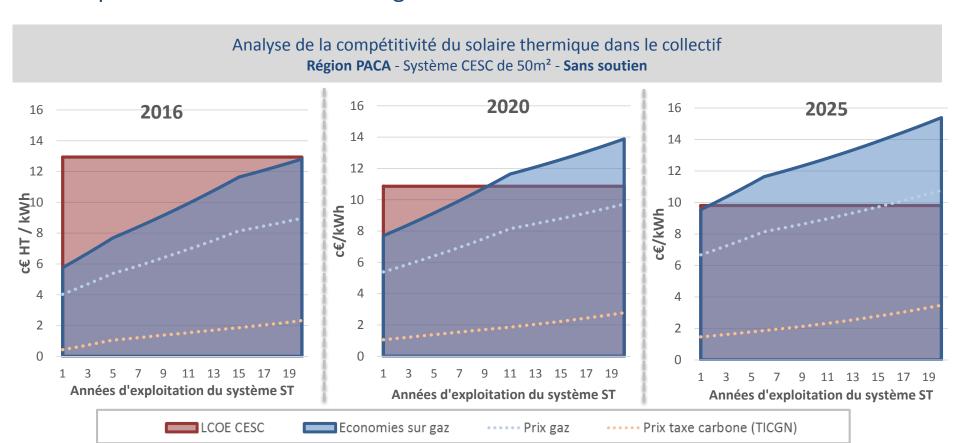
Le **taux de rentabilité interne** correspond au taux d'actualisation permettant d'annuler la VAN. Plus ce taux est élevé, plus l'investissement est rentable pour un acteur donné. **TVA comprise**



Dans le collectif, le solaire thermique <u>avec appoint gaz</u> devient compétitif dès 2019-2020 dans le Sud de la France, par rapport aux solutions 100%


CESC

Rentable sans soutien dès 2020 dans le sud de la France, le solaire thermique collectif accroit sa compétitivité et pourrait présenter en 2025 des coûts de production près de 10% plus bas que la solution alternative au gaz.



Le CESC 100m², en offrant un plus grand taux de couverture solaire, permet d'abaisser le coût de production du kWh ECS (par rapport à un système de 50m²) renforçant ainsi la compétitivité de ce type de système solaire face au gaz (compétitif dès 2019)

A noter: la recherche de la meilleure compétitivité du système CESC s'ajuste entre un taux de couverture (TA) plus ambitieux et un surcoût lié à des m2 de capteurs supplémentaires. Deux dimensionnements différents ont été comparés ici pour un même besoin: 50 m2 (TA 45% dans le Sud) et 100 m2 (TA 70%). La tendance actuelle est au dimensionnement pour un taux de couverture de l'ordre de 45% (dimensionnement correspondant au système de 50m²) afin d'éviter tout risque de surchauffe. Toutefois, un dimensionnement précis des besoins allié à des systèmes permettant de prévenir ces risques de surchauffe (système d'auto-vidange notamment) permettent d'envisager une orientation future vers des systèmes à plus fort taux de couverture (comme le système de 100m² de l'étude).

CESC

Zoom sur les coûts de production et les économies générées par le solaire thermique collectif tout au long de sa durée de vie, en comparaison avec une solution gaz – en PACA.

Dès 2020, en moyenne sur les 20 ans d'exploitation du système CESC, les économies générées par le solaire (vs gaz) dépassent les surcoût liés à l'investissement et à la maintenance (dès 2019 pour le système 100m² avec un taux de couverture de 75%).

En 2025, dans le Sud, dès la 2ème année d'exploitation d'un système CESC, les économies générées par rapport à un système gaz dépassent le coût de production solaire moyen (LCOE solaire)

CESI

Analyse de sensibilité sur la rentabilité d'une installation collective avec appoint en PACA

CESC

Référence					
Rentabilité	Le projet est-il rentable ?	Taux de rentabilité interne			
2016	NON	1%			
2017	NON	2%			
2018	NON	3%			
2019	NON	4%			
2020	OUI	5%			
2021	OUI	5%			
2022	OUI	6%			
2023	OUI	7%			
2024	OUI	8%			
2025	OUI	8%			

Doublement de la taxe carbone					
Rentabilité	Le projet est-il rentable ?	Taux de rentabilité interne			
2016	NON	3%			
2017	NON	4%			
2018	OUI	5%			
2019	OUI	6%			
2020	OUI	8%			
2021	OUI	8%			
2022	OUI	9%			
2023	OUI	10%			
2024	OUI	11%			
2025	OUI	12%			

Hausse de 5%/an du prix du gaz						
Rentabilité	Le projet est-il rentable ?	Taux de rentabilité interne				
2016	NON	2%				
2017	NON	3%				
2018	NON	4%				
2019	OUI	5%				
2020	OUI	6%				
2021	OUI	7%				
2022	OUI	8%				
2023	OUI	9%				
2024	OUI	10%				
2025	OUI	12%				

Taux de couverture de 70% (ST 100m²)

Rentabilité	Le projet est-il rentable ?	Taux de rentabilité interne
2016	NON	2%
2017	NON	3%
2018	NON	4%
2019	OUI	5%
2020	OUI	6%
2021	OUI	6%
2022	OUI	7%
2023	OUI	8%
2024	OUI	9%
2025	OUI	10%

Durée de vie CESC 25 ans (au lieu de 20 ans)

Rentabilité	Le projet est-il rentable ?	Taux de rentabilité interne		
2016	NON	3%		
2017	NON	4%		
2018	OUI	5%		
2019	OUI	6%		
2020	OUI	6%		
2021	OUI	7%		
2022	OUI	8%		
2023	OUI	8%		
2024	OUI	9%		
2025	OUI	10%		

Baisse plus forte des CAPEX (-50% en 2025)

Rentabilité	Le projet est-il rentable ?	Taux de rentabilité interne		
2016	NON	1%		
2017	NON	2%		
2018	NON	3%		
2019	OUI	5%		
2020	OUI	6%		
2021	OUI	7%		
2022	OUI	9%		
2023	OUI	10%		
2024	OUI	12%		
2025	OUI	14%		

Une hausse du prix du gaz de 5%/an, un doublement de la taxe carbone, une hausse du taux de couverture à 70% (contre 45%) ou encore une durée de vie plus longue des équipements solaires (25 ans au lieu de 20 ans) permettraient d'avancer l'année de rentabilité de 1 ou 2 ans, et apporteraient une très bonne rentabilité à horizon 2025 (TRI autour de 10-12%), facilitant ainsi le passage à l'acte pour les investisseurs.

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
 - Coûts 2016
 - Scénarios de déploiement
 - Baisse des coûts de production de la chaleur solaire
 - Compétitivité
 - Retombées à moyen terme
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

Un développement de la filière solaire thermique française dans le respect des objectifs PPE permettrait :

Emplois

...de générer près de **11 500 emplois directs et indirects** à horizon 2023

Création de 10 000 ETP vs 2016

GES

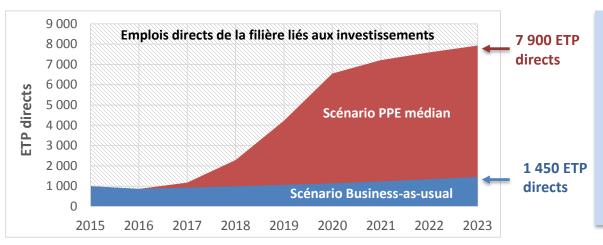
...d'éviter l'émissions de près de **0,9** MtCO₂ par an à horizon 2023 et de plus de **2,8 M MtCO**₂ sur la période 2016-2023

Qualité de l'air

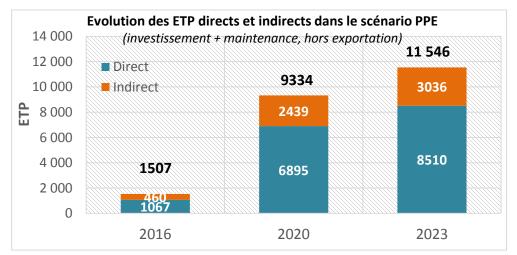
...de réduire les émissions de polluants atmosphériques de **750** tonnes/an pour le NOx et 60 tonnes/an pour le SO₂ à horizon 2023

Renouvelable

...d'éviter le puisage de près de **4,4 TWh d'énergie primaire non renouvelable par an** à horizon
2023 et près de **14 TWh** sur la
période 2016-2025


La structuration de la filière autour des objectifs PPE permettrait la création de nombreux emplois pendant la phase d'installation notamment

Emplois


GES

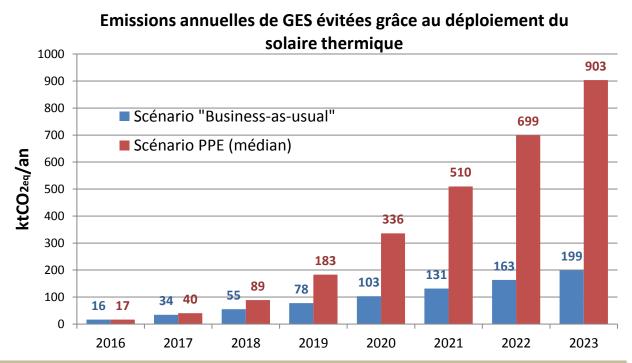
Qualité de l'air

Renouvelable

La trajectoire PPE pourrait permettre de générer près de 5 fois plus d'emplois directs d'investissement en 2023 que dans une trajectoire « business-asusual » (principalement sur les postes d'installation)

Dans la trajectoire PPE, la filière pourrait compter près de 11 500 emplois directs et indirects à horizon 2023, dont environ 600 emplois de maintenance (contre 2500 ETP dans le Business-as-usual).

A ces emplois peuvent être ajoutés ceux liés aux exportations .



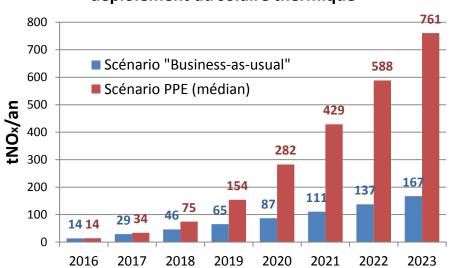
Source: Modèle In Numeri

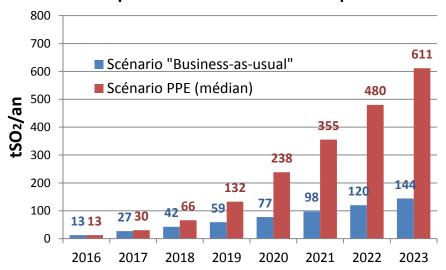
Un CESI (TCS = 65%) permet d'éviter entre **30 et 290 gCO2/kWh_{utile d'ECS}** selon la nature du système remplacé (min : CE électrique vs max : chaudière fioul)

Un CESC (TCS = 50%) permet d'éviter près de **150 gCO2/kWh**_{utile d'ECS} (en comparaison avec un système chaudière à gaz)

L'installation de solaire thermique en lieu et place de systèmes alternatifs au gaz ou à l'électricité permettrait d'éviter près de **900 ktonnes de CO_{2\acute{e}q}/an à horizon 2023** dans le scénario PPE. Ce qui équivaut à \approx 2,5 % des émissions de GES du secteur de la transformation d'énergie en France en 2014, en encore aux émissions annuelles de 0,5 M de voitures neuves (2016).

Au total sur la période 2016-2023, cela représenterait une économie de près de **2 800 ktonnes de CO2eq** dans le scénario PPE, contre moins de 800 ktonnes dans le scénario « business-as-usual ».




Le solaire thermique comme moyen de réduire significativement les émissions de polluants atmosphériques

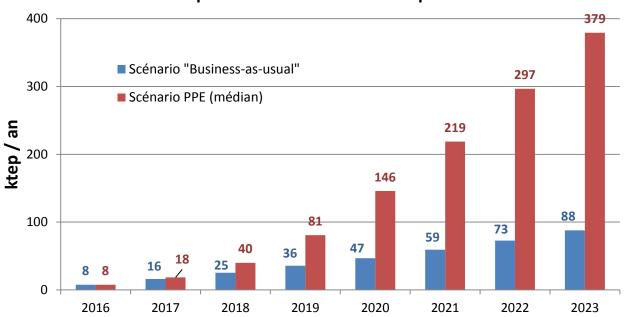
Emissions annuelles évitées de NOx grâce au au déploiement du solaire thermique

Emissions annuelles évitées de SO2 grâce au au déploiement du solaire thermique

L'installation de solaire thermique en lieu et place de systèmes alternatifs au gaz ou à l'électricité permettrait d'économiser près de **750 tonnes de NOx et 600 tonnes de SO₂ par an à horizon 2023** (sc. PPE). Ce qui équivaut en 2023 aux émissions annuelles plafonds de NOx (sous la norme Euro6) de 0,6M de voitures Diesel.

Au total sur la période 2016-2023, cela représenterait une économie de près de **2 350 tonnes de NOx et 1 930 tonnes de SO**₂ dans le scénario PPE, contre respectivement 655 et 580 tonnes dans le scénario « business-as-usual ».

Source: Gemis 4.5, Inventaire SECTEN du CITEPA, Echange avec les acteurs de la filière, Elaboration I Care & Consult



Le solaire thermique comme moyen de réduire l'utilisation de ressources non renouvelables

Emplois GES

Qualité de l'air Renouvelable

Economies d'énergie non renouvelable réalisées grâce au déploiement du solaire thermique

Un CESI (TCS = 65%) permet d'économiser entre 0,7 et 1,7 kWh d'EP NR /kWhEcs selon la nature du système remplacé (max : CE électrique)

Un CESC (TCS = 50%) permet d'économiser ≈ **0,6 kWh d'EP NR / kWh**_{ECS} (en comparaison avec un système chaudière à gaz)

L'installation de solaire thermique en lieu et place de systèmes alternatifs au gaz ou à l'électricité permettrait d'économiser près de 1 200 ktep d'énergie primaire non renouvelable sur la période 2016 − 2023 (soit ≈ 14 TWh d'EP NR) dans le scénario PPE, contre environ 350 ktep dans le scénario « business-as-usual ».

En 2023 les économies annuelles de consommation en énergie primaire non renouvelables pourraient avoisiner les **4,4 TWh d'EP NR / an** (380 ktep), ce qui représenterait près de 1 % de l'énergie primaire non renouvelable consommée en gaz en 2015.

Premières pistes de recommandations pour inscrire le solaire thermique dans sa trajectoire PPE

Des leviers réglementaires à mettre en œuvre ...

- Une augmentation de la Contribution énergie climat (taxe carbone) afin d'améliorer le signal prix des énergies carbonées ;
- Un renforcement des exigences de performance énergétique (PEBN et RE2018) en cohérence avec les recommandations européennes NZEB;

Des dynamiques vertueuses à impulser ...

- Mise en œuvre d'une stratégie de réduction de l'empreinte carbone des consommateurs de fioul et de gaz pour le chauffage et la production d'ECS (positionnement offensif des solutions solaires pour 4^{ème} période des CEE);
- La promotion du recours à l'énergie solaire pour l'industrie et les réseaux de chaleur, en lien avec le Fonds Chaleur ;
- Accompagner la structuration d'une offre de service énergétique sur le marché de l'existant, affaibli par le faible prix des énergies fossiles;

... en parallèle de la **poursuite des actions de progrès** des acteurs de la filière solaire thermique :

- Une dynamique de structuration de la filière pour abaisser les prix des systèmes installés ;
- Une meilleure capitalisation et diffusion des bonnes pratiques SOCOL pour la chaleur solaire collective ;
- Une reconquête du marché résidentiel existant avec une stratégie dédiée au chauffage solaire (SSC);
- Des logiques de dimensionnement ambitieuses qui offrent des taux de couverture importants maîtrisés;
- Une meilleure communication et valorisation du solaire thermique via des outils adaptés.

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

Eléments de comparaison PV / ST pour le bâtiment

	1m² de toiture sur un bâtiment collectif en PACA (taille totale d'installation : 50m2)			
	1m² de module photovoltaïque (surimposé 9kWc, réf prix : moyenne 3-9kW et 9-36 kW)		1m² de capteur solaire thermique (CESC de 50m²)	
Puissance	165 Wc _{élec}		700 W _{th}	
Productible annuel	215 kWh élec / an productible sortie onduleur et avant stockage		600 kWh _{th} / an en sortie de stockage 700 kWh _{th} / an avant stockage dans le ballon	
Stockage local	Non inclus (une partie peut être autoconsommée au fil du soleil sans stockage)		Inclus, sous forme thermique (ballon)	
LCOE avec stockage			129 € / MWh _{th} (2016) 98 € / MWh _{th} (2025)	
LCOE sans stockage	116 € / MWh _{élec} (2016) 84 € / MWh _{élec} (2025)		100 €/MWh _{th} (2016) 76 €/MWh _{th} (2025)	
Coût du kWh autoconsommé	190 €/MWh _{élec} (2016) - 126 €/MWh _{élec} (2025) si TA 50% 148 €/MWh _{élec} (2016) - 102 €/MWh _{élec} (2025) si TA 70%		129 € / MWh _{th} (2016) 98 € / MWh _{th} (2025)	
Investissement au kWh produit (sans stockage)	82 € / MWh _{élec} sans stockage (2016) 56 € / MWh _{élec} sans stockage (2025)		72 € / MWh _{th} sans stockage (2016) 52 € / MWh _{th} sans stockage (2025)	

- En bâtiment collectif, la technologie solaire thermique présente des coûts de production hors stockage et surtout des coûts au kWh autoconsommé inférieurs à la technologie photovoltaïque...
- ... mais il faut rappeler que l'utilité et l'usage d'un kWh thermique ne sont pas identiques à ceux d'un kWh électrique (et que les solutions alternatives n'ont pas le même coût).
- Enfin, on peut noter qu'à surface égale, le solaire thermique produit près de 3 fois plus d'énergie renouvelable que le PV.

Sommaire

- Objectifs et cadre de l'étude
- Analyse de la filière photovoltaïque française
- Analyse de la filière solaire thermique française
- Synthèse comparative photovoltaïque / solaire thermique
- Conclusion

Conclusion

Une baisse des coûts de production qui se poursuit...

- ✓ La baisse constatée des coûts d'investissement et donc du LCOE du solaire photovoltaïque et thermique devrait se poursuivre de manière significative d'ici 2023
 - o avec une baisse estimée du LCOE de -25 à -30% pour le photovoltaïque entre 2015 et 2023 selon les segments considérés. Le coût de production des grandes centrales solaires pourraient ainsi passer de 68 €/MWh en 2015 à 50€/MWh à horizon 2025.
 - o avec une baisse du LCOE qui pourrait dépasser les 30% pour le solaire thermique entre 2015 et 2023 (à condition que la filière puisse s'inscrire dans la trajectoire définie par la PPE).

Et une compétitivité qui se renforce

- ✓ L'énergie solaire confirme son statut d'énergie compétitive, avec un avantage accentué à l'avenir grâce à la baisse des coûts d'investissement, et va nécessiter un soutien public modéré pour accompagner ses progrès de compétitivité dans les années à venir
 - Le photovoltaïque en autoconsommation, d'ores-et-déjà compétitif sans soutien pour les grands toitures avec un fort taux d'autoconsommation (90%), le deviendrait à horizon 2018/2019 dans le Sud pour les moyennes toitures et 2022/2023 pour le résidentiel.
 - Le solaire thermique collectif pourrait devenir compétitif sans soutien dès 2019/2020 dans le sud de la France, face aux solutions alternatives.

... avec à la clé d'importantes retombées socioéconomiques et environnementales En se basant sur la PPE actuelle, le secteur solaire a le potentiel d'éviter l'émission de 24MtCO₂-eq et de compter plus de 21 000 emplois bruts directs d'ici 2023 (+13 000 / 2015), dont 13 900 dans le photovoltaïque et 7 900 dans le solaire thermique. Une part de plus en plus importante des emplois est liée à la maintenance et constitue donc une source d'emplois pérennes et non délocalisables. A cela s'ajoute des retombées positives en termes de qualité de l'air, de redynamisation et de sensibilisation des territoires.

ANNEXE

Annexe 1 : Hypothèses communes à l'ensemble de l'étude

Annexe 2 : Hypothèses et méthodologie – Photovoltaïque

Annexe 3 : Hypothèses et méthodologie – Solaire thermique

Annexe 4: Hypothèses retenues pour la comparaison PV/ST

Annexe 5 : Composition du comité de pilotage de l'étude

Annexe 1:

Hypothèses communes à l'ensemble de l'étude

Hypothèses d'évolution du prix des énergies et du carbone (I)

Prix de l'électricité pour 2015

Segment de consommateurs	Champs d'application dans l'étude	Paramètres	Valeurs	Sources
Tarif de détail	- PV petites toitures [0-9kW]	Prix 2015 [hors abonnement, hors TVA]	122,3 €/MWh	CRE – EDF : grille tarifaire tarif bleu réglementé – août 2015 (6-9 kVA)
résidentiel (tarif bleu réglementé)	- PV petites toitures [0-9kW] - Analyse ST (individuel et collectif)	Prix 2015 [hors abonnement, avec TVA]	146,8 €/MWh	CRE – EDF : grille tarifaire tarif bleu réglementé – août 2015 (6-9 kVA)
Tarif de détail professionnels (tarif réglementé bleu non résidentiel)	Moyennes toitures [9-36 kW]	Prix 2015 [hors abonnement, hors TVA]	116,9 €/MWh	Journal Officiel de la République Française – Barèmes tarif bleu non résidentiel – 1 ^{er} Août 2015
Tarif de détail tertiaire (≡ ancien tarif jaune)	Moyennes toitures type [36- 250 kW]	Prix 2015 [hors abonnement, hors TVA]	93,0 €/MWh	CRE/EDF, Barème tarif jaune (Option Base) au 1 ^{er} août 2015. Répartition HP/HC et Hiver/Eté basée sur les données de consommation Enedis
Tarif de détail industriel / très grand tertiaire (≡ ancien tarif vert)	Grandes toitures type > 250 kW	Prix 2015 [hors abonnement, hors TVA]	79,5 €/MWh	CRE/EDF, Barème tarif vert (Option A5 Base) au 1 ^{er} août 2015. Répartition HP/HC et Hiver/Eté basée sur les données de consommation Enedis
Prix du marché de gros	Energie injectée sur le réseau, hors soutien (systèmes en autoconsommation partielle)	Prix 2015	42,3 €/MWh	Prix du marché SPOT de l'électricité, pondérée via le profil de production du PV – données RTE, EPEX SPOT, RTE

A noter que les prix de l'électricité considéraient dans la présente étude de compétitivité sont pris hors abonnement car les économies ne sont réalisées que sur la part variable de la facture d'électricité.

Hypothèses d'évolution du prix des énergies et du carbone (II)

Hausse annuelle du prix de l'électricité pour 2015

Segment de consommateurs	Champs d'application dans l'étude	Paramètres	Valeurs	Sources
Marché de détail, tout segment confondu	- Analyse compétitivité autoconsommation PV - Analyse compétitivité ST	Hausse annuelle du tarif de détail, en valeur réelle (= en € constant)	+3%/an	Ordre de grandeur moyen basé sur l'évolution du tarif réglementé (fourniture + acheminement) sur la période 2011-2016 (données CRE) et sur l'évolution de la CSPE et des taxes locales (TCCFE et TDCFE) (données CRE Rapport CSPE 2014, ministère du développement durable)
Marché de gros	- Analyse compétitivité autoconsommation PV	Hausse annuelle du prix de gros en valeur réelle (= en € constant)	0%/an (pas de hausse)	Aucune hausse prévue liée à la forte incertitude quant à l'évolution à la hausse ou à la baisse du prix du marché de gros de l'électricité. L'évolution à la hausse du coût du nucléaire (lié au grand carénage) et du coût des énergies fossiles contribueraient à faire monter le prix de marché, mais dans le même temps, la pénétration des énergies renouvelables à coût marginal nul dans le mix électrique et la diminution de la demande électrique en France contribueraient à une diminution du prix de marché.

Hypothèses d'évolution du prix des énergies et du carbone (III)

Prix du gaz et hausse annuelle

Segment de consommateurs	Champs d'application dans l'étude	Paramètres	Valeurs	Sources	
Tarif résidentiel B1 Gaz [hors abonnement, hors TVA]	- Analyse ST (individuel et collectif)	Prix 2015	53,8 €/MWh	Engie, Tarif Résidentiel B1 Gaz (Chauffage et Eau Chaude ; hors abonnement et hors TVA	
		Prix 2016	46,3 €/MWh		
		Hausse en valeur réelle (€ constant)	Trajectoire AIE ≈ +1,7 % par an	Evolution du prix du gaz basé sur le scénario « new policies » du WEO 2016 (AIE). Points de passage en 2020, 2030 et 2040.	

Trajectoire de prix du carbone

Segment de consommateurs	Champs d'application dans l'étude	Paramètres	Valeurs	Sources
Consommateur de gaz en France (dont particuliers)	- Analyse ST (individuel et collectif)	Taxe carbone basée sur la contribution climat-énergie (CCE) – en valeur réelle (€ constant)	 2015: 14,5 €/tCO₂ 2016: 22 €/tCO₂ 2020: 56 €/tCO₂ 2030: 100 €/tCO₂ 	Site du ministère (légifrance)

Taux d'actualisation

Le taux d'actualisation utilisée dans l'étude correspond au coût moyen pondéré du capital (CMPC ou WACC en anglais) en valeur réelle. Ce CMPC dépend du type d'acteurs considérés et donc de la nature du projet.

Champs d'application dans l'étude	Répartition dette / fonds propres	Taux dette	Taux de rémunération des fonds propres	WACC nominal	Taux d'inflation annuel retenu	WACC réel ≡ taux d'actualisation pour l'étude
Centrales au sol [PV]		3,45 % [CRE, Frontier Economics]	7% [Acteurs filières PV]	4,16% [calculé]		3,03% [calculé]
Grandes et moyennes toitures – secteur tertiaire [PV]	80% dette / 20% fonds propres	3,45 % [CRE, Frontier Economics]	9% [Acteurs filières PV]	4,56% [calculé]	1,1% /an [moyenne période 2011-2015]	3,42% [calculé]
Petites toitures – Résidentiel [PV] Logement individuel et collectif [ST]		5,65 % [Banque de France]	2,60% [Fonds Euros 2012- 2015]	5,04% [calculé]		3,90% [calculé]

 $WACC_{nominal} = (part\ de\ dette) \times (taux\ de\ dette) + (part\ de\ fonds\ propre) \times (taux\ rémunération\ fonds\ propres)$

$$WACC_{r\'{e}el} = \frac{1 + WACC_{nominal}}{1 + taux\ d'inflation} - 1$$

Annexe 2:

Hypothèses et méthodologie – Photovoltaïque

Sommaire - Annexe 2

- **PV** Coûts
- PV Hypothèses de construction des scénarios de déploiement PV
- PV Hypothèses de construction du mix énergétique remplacé par le PV

Méthodologie employée pour l'actualisation et la projection des coûts PV

Ressources bibliographiques

(littérature récente)

- Recensement des ouvrages récents :
 - o Rapport IRENA 2016
 - o Données PVxChange 2015-2016
 - o Rapport ITRPV 2016
 - o Rapport NREL 2015
 - o Rapport Fraunhofer 2016
- Observation des tendances récentes 2014-2016 pouvant affecter l'évolution des coûts (sur chacun des postes)

Enquête et entretiens auprès des adhérents Enerplan

(enquête été 2016)

- Collecte des coûts réalisée par Enerplan auprès de ses adhérents. Egalement quelques retours d'installateurs via GMPV (FFB).
- Collecte limitée mais permettant néanmoins de dégager des tendances, validées ensuite avec le COPIL
- Entretiens avec quelques acteurs de la filière photovoltaïque

Croisement et actualisation des coûts et des facteurs de baisse à partir du modèle de coûts construit par I Care & Consult dans le cadre de l'étude BIPS PV de 2014

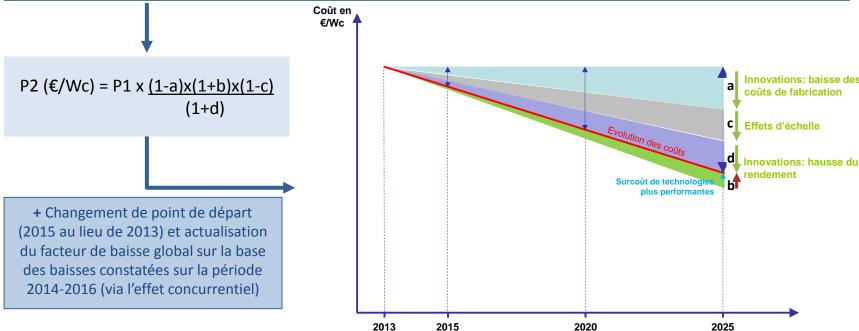
Coûts actualisés et projetés

Représentativité des données d'enquête			
Segment	Taille de l'échantillon		
Centrales au sol	5 développeurs de projets		
Grandes toitures (>100 kWc)	7 développeurs/ installateurs		
Moyennes toitures (9-100 kWc)	5 installateurs		
Petites toitures (< 9 kWc)	3 installateurs		

Explication des différences de coûts entre les projections de l'étude BiPS PV pour 2015 et la présente étude Enerplan/Ademe

Par rapport aux projections apportées par l'étude **ADEME « Bilan, Perspective et Stratégie de la filière photovoltaïque française »** pour l'année 2015, des coûts plus bas ont été observés sur le marché photovoltaïque français sur 2015-2016 et ont été répercutés dans la présente étude. Ces baisses plus fortes sont en grande partie dues à un contexte actuel de forte concurrence pour les grandes puissances (AO CRE) et de forte baisse des tarifs d'achat pour les moyennes toitures. A noter que les facteurs de baisse de l'étude BiPS PV se basaient sur les innovations technologiques à venir et sur les effets volume, et n'intégraient pas ces aspects concurrentiels.

	Différence coûts 2015 BiPS PV / présente étude	Facteurs explicatifs
Centrales au sol	- 7 %	La différence de coûts significative observée sur le segment des centrales au sol est en grande partie due à la forte contraction des marges réalisées par les développeurs dans un contexte de forte concurrence dans les réponses aux AO CRE
Moyennes toitures [9-100kW] et grandes toitures >100 kW	- 16 %	La différence de coûts significative observée sur le segment des moyennes toitures (par rapport au coût projeté BiPS PV) se justifient en partie par les niveaux bas des tarifs d'achat sur ces segments, ce qui a contraint les installateurs à optimiser de façon drastique leurs coûts sur ces segments (forte réduction de marges à chaque maillon) pour que des projets se fassent.
Moyennes toitures [0-9 kWc]	- 2 %	Pas de contraction forte des coûts observés sur le segment résidentiel, moins impacté par la baisse des tarifs d'achat.


Méthodologie employée pour la baisse des coûts

Utilisation des facteurs de baisse de l'étude ADEME BiPS PV de 2014

Facteurs de baisse basés sur :

- <u>Facteur a</u> (cf. graphique) : Les **innovations** « **design-to-cost** » qui consiste à abaisser les coûts du système en agissant sur la conception du produit et donc sur les lignes de fabrication
- <u>Facteur b</u> : **L'effet d'augmentation des coûts lié à l'intégration d'une innovation** dans la conception
- <u>Facteur c</u>: **L'effet d'échelle**, qui correspond à un abaissement du coût unitaire des composants en raison de l'accroissement des quantités produites
- <u>Facteur d</u>: **L'effet d'augmentation du rendement** lié à l'intégration d'innovations.

Facteur de baisse non pris en compte et à l'origine d'écarts avec les projections BiPS PV : **l'effet de concurrence** sur certains segments qui vient accélérer la baisse des coûts (la baisse arrive plus tôt que prévue et de façon moins étalée dans le temps)

Hypothèses de calcul des LCOE photovoltaïques

LCOE =
$$\frac{I_0 + \sum_{t=1}^{n} \frac{A_t}{(1+i)^t}}{\sum_{t=1}^{n} \frac{E_t}{(1+i)^t}}$$

Paramètres à calculer	Sources de collecte
Investissement initial I ₀	Basé sur le modèle de coûts d'I Care & Consult
Coûts opérationnels A_t à l'année t (maintenance, loyers, taxes)	Basé sur les coûts d'exploitation/maintenance retenus dans l'étude « Bilan, Perspective et Stratégie de la filière photovoltaïque française » (BiPS PV) de 2014 (source : étude CRE d'avril 2014 « Coûts et rentabilité des EnR »). Un facteur de baisse de 1%/an pour les centrales au sol et de 2%/an pour les toitures a ensuite été appliqué (sources : étude IRENA « Power to change » de 2016 et EuPVPlatform « PV LCOE in Europe » 2015)
Energie produite E _t à l'année t qui dépend de : - Valeur d'ensoleillement à la maille régionale - Ratio de performance des installations - Coefficient trigonométrique	 Valeurs d'ensoleillement identiques à celle utilisée dans l'étude BiPS PV de 2014 (source : PVGIS et JRC European Commission) Ratio de performance : 0,8 pour centrales au sol et surimposé, 0,75 pour toitures IAB/ISB Coefficient trigonométrique : 0,9 pour les petites/moyennes toitures, 0,92 pour les grandes toitures, 0,995 pour les centrales au sol. Perte d'efficacité annuelle : 0,5%/an
Durée de vie n de l'équipement	25 ans (idem que l'étude BiPS PV)
Taux d'actualisation i qui dépend de : - répartition fond propre / dette - taux de rémunération des fonds propres - Taux d'intérêt de la dette - Inflation	Le taux d'actualisation utilisée dans l'étude correspond au coût moyen pondéré du capital (CMPC ou WACC en anglais) en <u>valeur réelle</u> . Le CMPC est construit sur la base des hypothèses présentées précédemment

Sommaire – Annexe 2

- **PV** Coûts
- PV Hypothèses de construction des scénarios de déploiement PV
- PV Hypothèses de construction du mix énergétique remplacé par le PV

Méthodologie de construction des scénarios

Puissance installée annuellement

- Répartition de la puissance PV à installer annuellement pour atteindre les objectifs en cumulé de la PPE à horizon 2023 :
 - o Pour 2016 : volumes raccordés au 1er semestre + projets ayant leur convention de raccordement signée
 - o Pour la période 2017-2018 : période de montée en charge (avec un objectif annuel 1125 MW)
 - o Pour la période 2019-2023 : rythme d'installations plus important afin d'atteindre les objectifs PPE (≈ 2GW/an)c

Répartition des MW entre les différents segments

- Pour les puissances > 100 kWc: à partir des volumes prévus dans les AO CRE « centrales au sol » et « bâtiment » (avec une hypothèse de 3 ans de décalage entre la date de limite de dépôt des offres et la mise en service). Extrapolation des AO CRE pour les installations en 2022 et 2023 (source CRE).
- Pour les puissances < 100 kWc : volumes permettant de compléter les volumes >100kWc pour atteindre l'objectif annuel, et répartition basée sur la répartition de 2016 (source : SOeS).

Volumes installés en autoconsommation

- Deux vitesses de déploiement de l'autoconsommation ont été considérés: une lente (scénario de référence et scénario
 « centrales au sol ») qui aboutit en 2023 à un taux d'installation en autoconsommation de 40%, une rapide (sc. toiture et
 sc. « trajectoire ambitieuse ») qui aboutit en 2023 à un taux proche de 80%.
- Les drivers considérés (de façon qualitative) pour le déploiement de l'autoconsommation sont :
 - La compétitivité sans soutien du modèle d'autoconsommation pour les différents segments (pénétration naturelle du PV en autoconsommation)
 - o La contribution du BEPOS à l'émergence d'installations en autoconsommation (contribution plus ou moins forte en fonction des seuils qui seront adoptés)
 - o Les volumes et la fréquence des appels d'offres « autoconsommation » lancés par la CRE
 - o Les niveaux de soutien apportés au modèle concurrent d'injection totale
 - o Le cadre législatif en cours et à venir (notamment pour l'autoconsommation collective).

Volumes installés en surimposition

- Pas de variante adoptée d'un scénario à un autre (même répartition entre intégré au bâti et surimposé).
- Le niveau de pénétration du surimposé s'est appuyé sur différents drivers :
 - Forte augmentation du niveau de soutien apporté aux toitures en surimposition (qui ne bénéficiaient historiquement que du tarif T5, très bas)
 - o Parallèlement, baisse du soutien à l'intégré au bâti
- Montée en charge du surimposé pour passer de 4% en 2016 (source ADEME) à 80% en 2023

Sommaire – Annexe 2

- **PV** Coûts
- PV Hypothèses de construction des scénarios de déploiement PV
- PV Hypothèses de construction du mix énergétique remplacé par le PV

Qu'est-ce le mix énergétique remplacé?

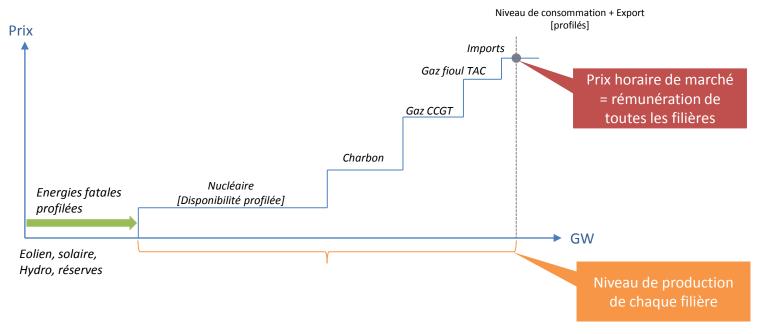
Définition

- Le mix énergétique remplacé correspond au mix de production remplacé par le photovoltaïque, année après année, sur la période 2016-2025.
- Ce mix est obtenu par différence entre le mix énergétique d'un scénario avec PV (déploiement selon PPE) et celui d'un scénario sans déploiement PV.
- Ce mix est composé des moyens de production non-soutenus suivants : nucléaire, gaz, charbon et fioul (d'origine française ou étrangère).

Utilité

La comparaison entre l'énergie photovoltaïque et le mix énergétique remplacé permet, entre autres, d'estimer :

- les émissions de GES évitées grâce au PV
- les émissions de polluants atmosphériques évitées
- les quantités d'énergies non renouvelables économisées



Logique de construction du mix énergétique remplacé par le PV

- Sur le marché de l'électricité, les capacités de production d'électricité sont appelées en fonction de leur **ordre de préséance économique** (merit order), c'est-à-dire en fonction de leur **coût marginal de production** (le moyen le moins cher est appelé en premier).
- Les énergies renouvelables ayant un coût marginal quasi-nul, elles sont appelées prioritairement.

 C'est cette méthode de merit order qui a été retenue pour construire le mix énergétique dans le scénario « avec PV » et dans le scénario « sans PV », et en déduire le mix énergétique remplacé par le PV. Les coûts marginaux utilisés sont issus de l'étude « Projected Costs of Generating Electricity » de 2015 et du WEO 2015 (AIE).

Variable structurante : l'évolution des capacités de nucléaire et de fossile sur la période 2016-2025

Scénario nucléaire

Scénario nucléaire bas :

- Cadre actuel de la LTECV
- Vise l'atteinte de 50% de nucléaire dans le mix à horizon 2025
- Equivaut à un scénario de fermeture de centrales après 43 ans d'exploitation

Scénario nucléaire médian :

- Scénario intermédiaire visant l'atteinte de 63% de nucléaire à horizon 2025
- Equivaut à un scénario de fermeture de centrales après 46 ans d'exploitation

Scénario nucléaire haut :

- Le parc annuel est maintenu à son niveau actuel (75% du mix) jusqu'en 2025
- Les centrales sont prolongées au-delà de 50 ans (en durée de vie)

Scénario capacités fossiles

Scénario thermique haut :

- Basé sur le scénario haut du Bilan Prévisionnel 2016 de RTE
- Maintien des capacités CCG (à 4,5 GW)
- Fermeture des dernières centrales charbon en 2023

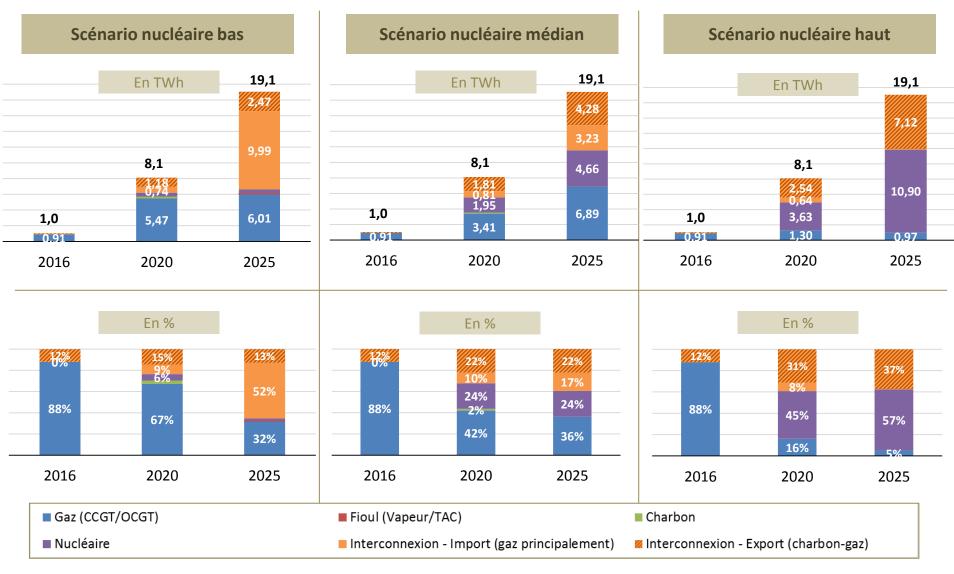
Scénario thermique médian :

 Scénario médian entre les deux scénarios bas et haut du Bilan Prévisionnel 2016 de RTE

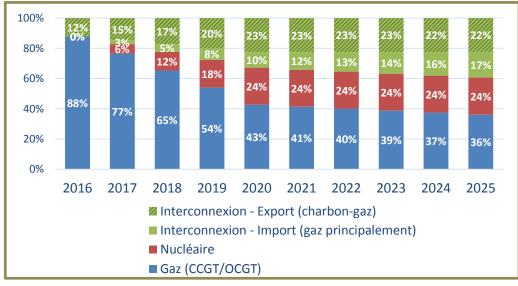
Scénario thermique bas :

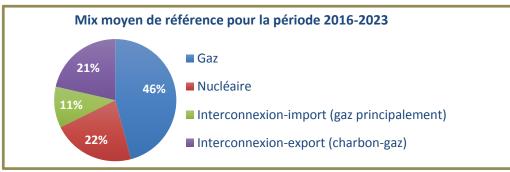
- Basé sur le scénario bas du Bilan Prévisionnel 2016 de RTE
- Réduction par 2 de la capacité installée en CCG
- Fermeture des centrales à charbon dès 2018

Toutes les autres capacités de production (Solaire, Eolien, Hydro, Bioénergies, Export et Import, Fioul et Gaz TAC) sont fixées indépendamment de ces scénarios, sur la base des objectifs PPE et du Bilan Prévisionnel de RTE.


Hypothèses du modèle

- Profilage horaire pour :
 - la consommation totale
 - la production éolien / solaire / bioénergie / hydraulique et cogénération
 - la disponibilité nucléaire
- Evolution de la capacité nucléaire basée sur les scénarios bas et haut présentés précédemment
- Evolution de la capacité des moyens fossiles basée sur les scénarios bas et haut de RTE
- Evolution des autres moyens de production (EnR notamment) basés sur la PPE
- Profilage des exports à partir de l'année 2015 puis ajustement du niveau en fonction de la production en nucléaire et énergies fatales pour l'année considérée
- Evolution des capacités d'interconnexion basée sur le schéma décennal de développement du réseau (RTE)


Résultat du modèle I Care & Consult



Mix de référence retenu pour l'étude

Mix basé sur les valeurs 2016, 2020 et 2025 du scénario nucléaire médian. Une linéarisation a été réalisée entre 2016-2020, et 2020-2025

Hypothèses pour l'électricité importée

- La réduction des imports via une plus forte pénétration de PV permet de remplacer des moyens de pointe et semi-pointe dans les pays limitrophes (les imports ayant lieu principalement lors des périodes où le système électrique français est contraint).
- Les moyens de pointe et semi-pointe dans les pays voisins est principalement à base de gaz et un peu de fioul.
- Hypothèses : 80% gaz et 20% fioul.

Hypothèses pour l'électricité exportée

- L'augmentation des exports via une plus forte pénétration de PV (en été notamment) permet de remplacer des moyens de semi-base et semi-pointe dans les pays limitrophes.
- Ces moyens de production, dans les pays limitrophes, sont principalement au charbon et au gaz.
- Hypothèses : 50% charbon, 50% gaz.

Annexe 3:

Hypothèses et méthodologie – Solaire thermique

Sommaire – Annexe 3

- **ST** Sources et hypothèses coûts
- ST –Sources et hypothèses retenues pour l'estimation des retombées

Méthodologie pour les niveaux de coûts et les facteurs de baisse

Méthodologie évolution CAPEX 2015-2025

Croisement entre:

- Etude Compétitivité Solaire Thermique ADEME
- Entretiens avec les acteurs de la filière
- Littérature (IEA-SHC, Fraunhofer, Observ'Er)

Evolution CAPEX CESI (% de baisse)	Min 2020	Max 2020	Min 2025	Max 2025
Total	8%	21%	12%	32%
Système solaire (capteur, structure, stockage)	5%	10%	7,5%	15%
Equipement et Matériel Annexe (dont tuyauterie)	5%	10%	7,5%	15%
Pose (rémunération pose)	10%	30%	15%	45%
Frais généraux et marge	10%	30%	15%	45%

Pour les CET, une baisse des coûts de 1%/an a été retenue

Evolution CAPEX CESC (% de baisse)	Min 2020	Max 2020	Min 2025	Max 2025
Total	7%	19%	11%	29%
Système solaire (capteur, structure, stockage)	5%	10%	7,5%	15%
Equipement et Matériel Annexe (dont tuyauterie)	5%	10%	7,5%	15%
Pose (rémunération pose)	10%	30%	15%	45%
Frais généraux et marge	10%	30%	15%	45%
Monitoring	5%	15%	10%	25%
Ingénierie BE	5%	20%	10%	30%

- Des coûts de matériel qui continueront à baisser mais de façon limitée (sauf si des innovations majeures apparaissent).
- Des coûts de pose qui peuvent fortement baissés par effets d'échelle et de structuration de la filière

Autres hypothèses utilisées pour l'analyse de la compétitivité du solaire thermique individuel

GENERAL	Unité	Valeur	Source
Energie utile d'ECS par logement	kWh/an	2667	Etude compétitivité ADEME 2013
Pertes partie supérieure ballon solaire avec appoint élec	%	10%	Entretien avec acteurs filières (Belenos/CETIAT, CSTB)
Pertes partie supérieure ballon solaire avec appoint gaz	%	10%	Entretien avec acteurs filières (Belenos/CETIAT, CSTB)
Taille du système CESI	m² capteurs	4,5	Taille moyenne d'un CESI classique
Taux d'actualisation	%	3,90%	WACC courant basé une répartition dette/fonds propre à 80%/20%, sur un taux de dette de 5,65%, un taux de rémunération des fonds propres de 2,6% et un taux d'inflation de 1,1%/an.
Rendement réel chaudière gaz à condensation	% PCS	70%	ADEME
COP réel CET - PACA	СОР	1,9	ADEME
COP réel CET - Pays de la Loire	СОР	1,7	ADEME
COP réel CET - lle de France	СОР	1,5	ADEME
Facteur d'émission gaz naturel (combustion)	tCO2e/TJ PCI	56,7	ADEME, Base Carbone 2014
Facteur d'émission gaz naturel (combustion) par MWh	tCO2e/MWh PCS	0,184	Conversion 1 MWh PCI <-> 1,111 MWh PCS
Baisse annuelle CAPEX CET	%	1%	Hypothèse groupement
Productible PACA	kWh/m²/an	450	ENERPLAN-ADEME (la dégration annuelle du productible a été négligée ici)
Productible Pays de la Loire	kWh/m²/an	360	ENERPLAN-ADEME (la dégration annuelle du productible a été négligée ici)
Productible Ile-de-France	kWh/m²/an	300	ENERPLAN-ADEME (la dégration annuelle du productible a été négligée ici)

OPEX		
CESI classique complet (4,5m²) + appoint gaz	€ HT 2016 / an	18
CESI classique complet (4,5m²) + appoint élec	€ HT 2016 / an	10
Production ECS via chaudière à gaz	€ HT 2016 / an	14
CET	€ HT 2016 / an	10

DUREE DE VIE		
CESI / période de calcul	années	20
Système gaz	années	20
CET	années	15

Autres hypothèses utilisées pour l'analyse de la compétitivité du solaire thermique dans le collectif

GENERAL	Unité	Valeur	Source
Energie utile d'ECS par logement	kWh/an	1310	Etude compétitivité ADEME 2013
Dimensionnement installation CESC 50m ²	m² capteurs / logement	1	Etude compétitivité ADEME 2013
Dimensionnement installation CESC 100m ²	m² capteurs / logement	2	
Taux d'actualisation	%	3,90%	Cf. hypothèses générales présentées précédemment
Rendement réel chaudière gaz à condensation	% PCS	70%	ADEME
Facteur d'émission gaz naturel (combustion)	tCO2e/TJ PCI	56,7	ADEME, Base Carbone 2014
Facteur d'émission gaz naturel (combustion) par MWh	tCO2e/MWh PCS	0,184	Conversion 1 MWh PCI <-> 1,111 MWh PCS

PRODUCTIBLE SYSTÈME 50m²

Productible PACA - système 50m²	kWh/m²/an	600	ENERPLAN-ADEME
Productible Pays de la Loire - système 50m²	kWh/m²/an	520	ENERPLAN-ADEME
Productible Ile-de-France - système 50m²	kWh/m²/an	450	ENERPLAN-ADEME

PRODUCTIBLE SYSTÈME 100m²

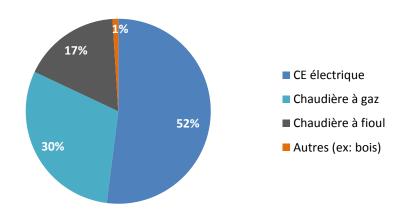
Productible PACA - système 100m²	kWh/m²/an	470	ENERPLAN-ADEME
Productible Pays de la Loire - système 100m²	kWh/m²/an	430	ENERPLAN-ADEME
Productible Ile-de-France - système 100m²	kWh/m²/an	380	ENERPLAN-ADEME

OPEX		
CESC 50m ² + appoint gaz séparé (système complet)	€ 2016 / an	19
CESC 100m ² + appoint gaz séparé (système complet)	€ 2016 / an	17
Chaudière gaz à condensation existante	€ 2016 / an	10

DUREE DE VIE			
CESC	années	20	Enerplan/ADEME - Fiche standardisée CEE
Système gaz	années	20	

Sommaire – Annexe 3

- **ST** Sources et hypothèses coûts
- ST Hypothèses retenues pour le mix remplacé par le solaire thermique



Hypothèses retenus pour la construction du système type remplacé par le solaire thermique

Système de référence remplacé par le CESI

Le CESI est complété d'un appoint utilisant, par hypothèse, la même énergie que celle utilisée par le système qu'il replace.

Emissions évitées avec un CESI : 80 kgCO2/m².an soit 124 gCO2/kWh.an

Sources : chiffres clés du bâtiment ADEME 2013

Système de référence remplacé par le CESC

Chaudière gaz à condensation à 100%

En pratique, un CESC pourrait aussi remplacer des systèmes centralisés au fioul, voire au bois.

Emissions évitées avec un CESC : 199 kgCO2/m².an soit 152 gCO2/kWh.an

Annexe 4:

Hypothèses retenues pour la comparaison PV/ST

Hypothèses retenues pour la comparaison PV/ST

	Photovoltaïque (PV)	Solaire thermique (ST)
Cadre de la comparaison	Installation PV ou ST occupant une surface de 50 m² sur un logement collec	tif en PACA
Caractéristique des systèmes	Système PV en surimposition d'une puissance de 9kWc (correspond à une surface de 50m²) (durée de vie de 25 ans, comme dans l'étude)	Chauffe-eau solaire collectif (CESC) de 50m² (durée de vie de 20 ans, comme dans l'étude)
Productible annuel	Densité de puissance moyenne : 165 Wc/m² Source : étude BiPS PV	Productible en sortie de stockage : 600 kWh _{th} / an (données de l'étude) Productible avant stockage : 700 kWh _{th} / an (correspond au productible avant pertes de la partie inférieure du ballon) – source : ADEME/Enerplan
CAPEX des systèmes	Moyenne entre segment [3-9 kWc] et [9-36 kWc] - 1,64 € HT/Wc ≡ 270 € HT/m² (2016) - 1,11 € HT/Wc ≡ 180 € HT/m² (2025) Source : données collectées dans la présente étude	- CAPEX avec stockage : 900 €/m² (2016) - 640 €/m² (2025) - CAPEX sans stockage : 675 €/m² (2016)- 480 €/m² (2025) Hypothèse : le stockage (ballon solaire), sa marge et son installation comptent pour environ 25% du coût d'investissement total du ST Source : données collectées dans la présente étude
LCOE avec stockage		Sur la base du CAPEX avec stockage et des hypothèses de productibles, d'OPEX et de taux d'actualisation utilisés dans l'étude
LCOE sans stockage	Sur la base du CAPEX avec stockage et des hypothèses de productibles, d'OPEX et de taux d'actualisation utilisés dans l'étude	LCOE construit à partir du CAPEX sans stockage et du productible avant stockage $LCOE\ sans\ stockage = \frac{Investissement\ - coût\ ballon + \sum OPEX}{\sum Productible\ avant\ stockage}$ Ce LCOE sans stockage, utilisé pour la comparaison, correspond à un besoin continu en ECS, ce qui est rarement le cas.
Coût du kWh autoconsommé	Correspond au coût du système PV moins les revenus générés par la vente du surplus sur le marché de l'électricité (hyp prix de marché : 42,3 €/MWh), rapporté au MWh autoconsommé. Coût du kWh autoconsommé = LCOE PV taux d'autoconso - revenus surplus Pour un taux d'autoconsommation de 50%: Revenus générés par la vente du surplus : 42,3 €/MWh Pour un taux d'autoconsommation de 70%: Revenus générés par la vente du surplus : 18,1 €/MWh	Tous les kWh produits après stockage sont autoconsommés. Le coût du kWh autoconsommé correspond donc au LCOE du solaire thermique
Investissement au kWh produit (sans stockage)	Idem que le LCOE sans stockage, mais sans prise en compte des OPEX	

Annexe 5 : Composition du comité de pilotage de l'étude

Comité de pilotage de l'étude

Entités	Personnes
EMEDDI AM	Richard LOYEN
	François GIBERT
ENERPLAN	Edwige PORCHEYRE
	Mathilde EMERY
	Tristan CARRERE
	Nadine BERTHOMIEU
	Guilain CALS
ADEME	Jean-Michel PARROUFFE
ADEIVIE	David MARCHAL
	Bouzid KHEBCHACHE
	Raphael GERSON
	Martino LACIRIGNOLA
FFB / GMPV	Nicolas RANDRIA
UNICLIMA	Valérie LAPLAGNE
Générale du Solaire	Antoine HUARD
Solaire Direct	Christophe THOMAS

Entités	Personnes
CORUSCANT	Romain PREVOST
TECSOL	Daniel MUGNIER
INES	Xavier CHOLIN
DGEC	Cédric BOZONNAT
	Martine LECLERCQ
DHUP	Céline MOUVET
	Christine ROGER
DGE	Ludovic PLANTE
I CARE & CONSULT	Guillaume NEVEUX
	Julien PAULOU
	Valentin VERMEULEN
	Ali HAJJAR
	Jonathan ROULOT
IN NUMERI	Laurence HAEUSLER
E-CUBE	Etienne JAN

